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Abstract 

 The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard 

provides a wireless mesh network specification on which the ZigBee protocol is based.  

ZigBee networks are becoming increasingly popular for use in medical, industrial, and 

other applications.  By design, ZigBee devices are low-cost and able to form Wireless 

Personal Area Networks (WPANs) where low-cost and extended battery life are desirable 

features.  Traditional security techniques for ZigBee networks are based on presenting 

and verifying device bit-level credentials (keys).  While historically effective to some 

degree, bit-level only security is becoming increasingly insufficient and ZigBee networks 

are vulnerable to attack by any unauthorized rogue device that can obtain and present bit-

level credentials for an authorized device. 

Previous related research has shown that an additional physical layer (PHY) of 

security can be applied to augment ZigBee bit-level security.  This additional PHY 

security is achieved using Radio Frequency Distinct Native Attribute (RF-DNA) 

fingerprinting.  This research focused on utilizing a National Instruments (NI) X310 

Software-Defined Radio (SDR) hosting an on-board Field Programmable Gate Array 

(FPGA).  The demonstrations included device discrimination assessments using       

like-model ZigBee AVR RZUSBstick devices and included generating RF “fingerprints” 

in real-time, as an extension to AFIT’s RF-DNA fingerprinting work.  The goal was to 

develop a fingerprinting process that was both 1) effective at discriminating between like-

model ZigBee devices and 2) efficient for implementation in FPGA hardware. 
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A comparison was made between 1) fingerprints generated in the traditional 

MATLAB environment, and 2) RF-DNA fingerprints generated on the Kintex-7 FPGA 

hosted on the NI X310 SDR.  RF-DNA discrimination performance using fingerprints 

generated in real-time on FPGA hardware consistently exceeded an arbitrary percent 

classification benchmark of       .  This was verified across         

independent trials using the full-dimensional       feature set at a collected Signal-to-

Noise Ratio of             .  Fingerprinting performance using dimensionally-

reduced sets of      features (a proper subset of       full-dimensional features) 

derived from instantaneous Real (     ), Imaginary (     ), and Amplitude (    ) 

responses was statistically similar based on 95% Confidence Intervals (CI) for all subsets 

and averaged       .  Fingerprinting performance using a dimensionally reduced 

set of      instantaneous Phase (    ) features resulted in statistically poorer 

classification performance of       .  As designed and implemented, the full-

dimensional FPGA fingerprint generator only utilized approximately 7% of the X310 

Kintex-7 FPGA resources.  The full-dimensional fingerprinting performance of    

    using only 7% of FPGA resources demonstrates the feasibility for real-time RF-

DNA fingerprint generation and like-model ZigBee device discrimination using an SDR 

platform.  
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REAL-TIME RF-DNA FINGERPRINTING OF ZIGBEE DEVICES 

USING A SOFTWARE-DEFINED RADIO WITH FPGA PROCESSING 

I. Introduction 

1.1 Introduction 

 This chapter provides the operational and technical motivations for conducting 

this research.  Section 1.2 describes the Operational Motivation for focusing on ZigBee 

wireless network applications.  Section 1.3 provides the Technical Motivation which is 

based on prior Air Force Institute of Technology (AFIT) Radio Frequency Distinct 

Native Attribute (RF-DNA) fingerprinting work, and the relative contributions of this 

research.  Section 1.4 provides organizational details for this document. 

1.2 Operational Motivation 

 Wireless Personal Area Networks (WPANs) are increasingly popular in personal, 

medical, industrial and other applications.  The Institute of Electrical and Electronics 

Engineers (IEEE) 802.15.4 standard provides a specification for wireless mesh networks 

on which the ZigBee protocol is based.  By design, ZigBee devices able to form WPANs 

where low-cost and extended battery life are desirable features.  Traditional security 

techniques for ZigBee networks are predominantly based on presenting and verifying 

device bit-level credentials (e.g. keys).  While historically effective, ZigBee networks 

remain vulnerable to attack by unauthorized rogue devices that can obtain and present 

false bit-level credentials matching an authorized device.  Even without prior knowledge 

of the correct key, replay attacks against inadequately-defended networks can still be 
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employed in which a packet transmitted by an authorized device is collected and later 

replayed by an unauthorized device [18].  

1.3 Technical Motivation 

 As shown in Table 1.1 there is a considerable amount of previous related research 

[4,12,13,17,20,29,32,33,34] addressing Physical (PHY) layer of security of wireless 

communication systems.  Some of the methods in these works were adopted and applied 

here to address ZigBee PHY-based bit-level security augmentation.  The additional PHY 

security is achieved using Radio Frequency Distinct Native Attribute (RF-DNA) 

fingerprinting.  RF-DNA exploitation involves generating device “fingerprint” from PHY 

waveform responses to achieve human-like device discrimination–a unique one-to-one 

association between a fingerprint and a device.  The RF-DNA fingerprint used to 

discriminate among devices, even when identical bit-level credentials are presented.  

While previous AFIT research has demonstrated the effectiveness of MATLAB 

simulation-based RF-DNA classification of ZigBee devices [5,20,23], the research here 

represents the next step towards achieving real-time device classification and verification.  

A complete RF-DNA based security solution for ZigBee devices in the form of an air 

monitor is proposed in [23].  The air monitor would be physically co-located with ZigBee 

devices and actively accept or reject signals from other ZigBee devices based on their 

fingerprint signatures.  The purpose of this research was to demonstrate feasibility of 

implementing an air monitor using a National Instruments (NI) X310 Software-Defined 

Radio (SDR) hosting a Kintex-7 Field Programmable Gate Array (FPGA). 
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 Table 1.1 provides a summary of technical areas that were previously addressed 

and areas addressed in this research.  The amount of previous related research listed in 

Table 1.1 shows that the efficacy of RF-DNA fingerprinting has been well-established.  

The general methodology of the RF-DNA fingerprinting process has remained relatively 

unchanged in this research given the success of these previous works. 

1.4 Document Organization 

 The remainder of this document is organized as follows.  Chapter 2 provides a 

basic outline of the ZigBee protocol, SDR implementation, and background on the RF-

DNA processes employed in this research.  Chapter 3 provides the methodology used for 

experimental signal collection, FPGA hardware design, classification, three fingerprint 

generation methods, device ID verification, and DRA.  Chapter 4 presents classification 

results for the three fingerprint generation methods, classification performance using 

DRA feature sets, device ID verification, rogue rejection and FPGA resource utilization.  

Chapter 5 provides a summary and conclusions based on research results and 

recommendations for future work. 
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     Table 1.1: Technical areas in previous related work and current research contributions. 

Technical Area  Previous Work This Work 

 Addressed Ref #  

TD Features X [4,13,17,20,29,32,33,34] X 

SD Features X [27,29,33]  

WD Features X [12,12]  

 

Fingerprint Generation Platform 

Computer X 
[4,10,11,12,13,17, 

26,27,29,32,33,34] 
X 

FPGA X 
 

X 

 

Signal Type 

802.11 WiFi X [11,12,33] 
 

GSM Cellular X [24]  

802.16e WiMax X [26,27,32,33]  

802.15.4 ZigBee X [4,20] X 

 

Classifier Type 

MDA/ML X [4,10,12,17,20,26,27,29,32,33,34] X 

GRLVQI X [4,11,17] X 

 

Dimensional Reduction Analysis (DRA) 

GRLVQI X [4,11,17] X 

LFS X [10]  
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II. Background 

This chapter provides the technical background supporting the methodology 

described in Chapter 3.  Section 2.1 provides details for the ZigBee protocol defined by 

the IEEE 802.15.4 standard for Wireless Personal Area Networks (WPANs) [9].  Section 

2.2 describes the Radio Frequency Distinct Native Attribute (RF-DNA) fingerprint 

generation process which includes calculation of statistical features over a selected 

Region Of Interest (ROI) within time-domain signal responses.  Section 2.3 describes 

model development and device discrimination using the Multiple Discriminant Analysis, 

Maximum Likelihood (MDA/ML) classifier.  This is followed by Section 2.4 which 

describes the Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) 

classifier.  Section 2.5 provides a description of Software-Defined Radio (SDR) 

implementation and benefits.  The chapter concludes with Section 2.6 that describes 

attributes of a Field Programmable Gate Array (FPGA) and benefits for its use. 

2.1 ZigBee Signal Characteristics 

ZigBee devices are used to form low-cost, low-power WPANs and support 

network-enabled home appliances, home automation, industrial control, medical data 

monitoring and other applications.  ZigBee devices are designed according to the IEEE 

802.15.4 standard [9] which includes provisions supporting several possible modulation 

schemes and frequency bands.  For this research, the IEEE 802.15.4 frequency band 
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spanning 2400.0 to 2483.5 MHz was used with 16-ary Offset-Quadrature Phase Shift 

Keying (O-QPSK) data modulation.  Each channel has an instantaneous RF bandwidth of 

            , with Ch =5.0 MHz spacing between adjacent channels.  Figure 2.1 

shows the spectral location and assignment of channels 11-26. 

  ZigBee transmissions are specified to begin with a preamble region consisting of 

8 O-QPSK symbols mapping to 32 binary zeros.  Previous research [13] has shown that 

this preamble region can be successfully exploited to generate fingerprints and provide 

reliable device discrimination using an MDA/ML classifier; this is described in greater 

detail in Section 2.2 and Section 2.3.   

2.2 RF-DNA Fingerprint Generation 

RF-DNA fingerprinting is the process of characterizing the inherent differences in 

emission responses collected from multiple devices.  These differences are the result of 

factors such as operating temperature, device age, and variations in manufacturing 

tolerance [25].  Fingerprints can be generated from multiple responses, in multiple 

untransformed and transformed domains.  Fingerprints in this work were generated using 

a two step process: 1) generation of instantaneous Time-Domain (TD) responses, and 

 

Figure 2.1: Spectral Location of ZigBee Channels Number 11-26 [28]. 
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2) statistical feature generation over the selected TD ROI.  Each step is described in detail 

below. 

2.2.1 Time-Domain Waveform Response 

The common TD features used for RF-DNA fingerprint generation are 

instantaneous amplitude (a), phase ( ), and frequency (f) responses of a given ROI.  

Elements of the corresponding discrete sequences {    }, {     , and {    } are 

calculated from Real (     ) and Imaginary (     ) ROI components as follows [2,3,4]: 

                     , (2.1) 

            
     

     
 , for         , (2.2) 

      
 

  
 
     

  
  . (2.3) 

The resultant {    }, {     , and {    } sequences are centered (mean removed) 

and normalized as follows:  

 
       

       

   
 

       
   (2.4) 

 
       

       

   
 

        
  (2.5) 

 
  
     

       

   
 

        
  (2.6) 

where   ,    , and    are corresponding sequence means and  “max” represents the 

maximum value of the centered sequences {      , {     } and {      .  The resultant 

{       ,          and {  
       sequences are the centered, normalized TD sequences used 

for statistical RF-DNA feature calculation. 
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2.2.2 Statistical RF-DNA Features 

The centered, normalized sequences from (2.4) through (2.6) are divided into    

equal length, contiguous subsequences (ROI subregions) and summarized using      

statistical metrics of standard deviation ( ), variance (  ), skewness ( ) and kurtosis ( ) 

that are computed over each of    subregions.  Each of the summary statistics is also 

computed over the entire ROI, resulting in a total of      regions being used.  This 

process is illustrated in Figure 2.2. 

The summary  ,   ,   and   statistics are calculated as follows [25]: 

 

   
 

 
           

 

   

  (2.7) 

 

   
 

 
           

 

   

  (2.8) 

 

  
 

   
            

 

   

 (2.9) 

 
  

 

               

 

   

 (2.10) 

where   is total number of samples in a given subsequence and      represents a an 

arbitrary TD response.  The summary statistics for a given region    are then 

concatenated to form vector    
 as follows: 

    
     

   

    
   

      (2.11) 

where                .  The vector    
 is computed for each of      regions, and 

used to form vector    as, 
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Figure 2.2: Representative Illustration of RF-DNA Statistical Fingerprint Generation for 

     Total Subregions [25]. 

 

 

        
    

    
        

                   (2.12) 

where   represents one of the TD responses  ,   or  .  Finally, the composite statistical 

fingerprint vector   is formed by concatenating the    vector of each TD response as 

follows: 

                        (2.13) 

The resultant full-dimensional fingerprint vector   from (2.13) contains a total of 

                                                                elements. 

2.3 MDA/ML Classification 

 MDA/ML device discrimination includes two distinct processes: Multiple 

Discriminant Analysis (MDA) model development and Maximum Likelihood (ML) 

classification.  The goal of MDA is to reduce feature dimensionality and provide the 

greatest separation between multiple input classes.  This is accomplished by projecting 

full-dimensional fingerprints into a lower-dimensional space, while 1) maximizing 
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between-class spread and 2) minimizing within-class spread.  The between-class (  ) and 

within-class (    scatter matrices are computed using [31]:  

 

      

  

   

    (2.14) 

 

                    
  

  

   

 (2.15) 

where    and    are the covariance matrix and prior probability, respectively, for each of 

the    input classes.  The   -dimensional input RF-DNA fingerprint vectors,      from 

(2.13), are then projected into the     -dimensional space according to  

           , (2.16) 

where   is the           projection matrix formed from the      Eigenvectors of 

  
     and    is the RF-DNA fingerprint projection into the lower dimensional subspace.   

 Classification performance depends on the effectiveness of the   matrix in 

maximizing between-class distance and minimizing within-class spread.  To illustrate the 

projection of      using  , two possible MDA projection matrices (   and   ) are shown 

in Figure 2.3 [25].  In this case, projection matrix    provides the “best” classification 

model. 
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Figure 2.3: Representative Projections using    and    for a      Class Problem into 

a 2-Dimensional Space [25]. 

 

Classification of the projected fingerprints    is performed using a Maximum 

Likelihood (ML) process based on Bayesian posterior probability and assuming uniform 

costs and equal prior probability.  A similarity measure is computed by comparing the 

likeness of the unknown    fingerprint to each of       classes.  The classification 

decision is made by assigning (rightly or wrongly) unknown fingerprint    to the class 

yielding the highest measure of similarity.  

2.4 GRLVQI Classification 

 The GRLVQI classifier was also considered to provide a comparison to 

MDA/ML.  Like MDA/ML, GRLVQI is used to discriminate between multiple classes 

but provides several advantages, namely: 1) there is no inherent assumption of the 

distribution of input data, 2) GRLVQI is more suitable for cases where input class data 

(fingerprints) is noisy or inconsistent, and 3) a relevance ranking is generated for each 
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RF-DNA fingerprint feature [25].  Like prior related research, the GRLVQI relevance 

ranking is of particular interest given it provides a means numerically rank features and 

enable Dimensional Reduction Analysis (DRA). 

 For this research, GRLVQI was implemented as described in [25], with       

prototype vectors representing each of the    classes.  An RF-DNA fingerprint is 

classified as one of    classes by measuring the Euclidean distance between mapped 

fingerprints and each prototype vector; the input fingerprint is assigned to the class whose 

prototype vector is the minimum Euclidean distance from the mapped fingerprint.  Figure 

2.4 displays a visualization of the GRLVQI classification process. 

2.5 Software-Defined Radio (SDR) 

A Software-Defined Radio (SDR) is a radio system in which components that 

have been traditionally implemented with analog hardware, such as mixers or filters, are 

replaced with a software-based implementation.  SDR technology has quickly gaining 

popularity within the last decade given the increased performance in embedded 

microprocessors and general-purpose computers which enable implementation of highly 

complex radio systems.  An SDR can be rapidly reconfigured to change modulation 

scheme, bandwidth, and other key parameters that are normally fixed in an analog design.  

The SDR functionality can be implemented in a general purpose computer, Field 

Programmable Gate Array (FPGA), or any combination thereof.  Implementations that 

only rely on a general purpose computer can have extremely high latency because the 

signal has to propagate from the receiver to the computer system, normally through a 

Universal Serial Bus (USB) or Ethernet connection.  Components implemented on an  
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Figure 2.4: GRLVQI Classification of an Unknown Fingerprint Based on Minimum 

Euclidean Distance [25]. 

 

 

FPGA can have very low latency, achieving speeds close to that of an integrated circuit 

specifically designed for the task at hand.    

2.6 Field Programmable Gate Array (FPGA) 

 A Field Programmable Gate Array (FPGA) is a chip that can be programmed to 

rearrange its internal logic gates to perform a specific function.  For example, an FPGA 

can be programmed to process images, implement an encryption algorithm or even to act 

as a general purpose microprocessor.  An FPGA is typically chosen in an application 

where specialized operations are required and where requirements are expected to change 

over time.  In an SDR system as described in Section 2.5, an FPGA can take the place of 

mixers, filters, and more.  These operations that were once performed with fixed 

hardware can be rapidly reconfigured in an FPGA implementation.  Additionally, the 
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FPGA can be physically located in close proximity to an Analog-to-Digital Converter 

(A/D) to minimize overall latency of the radio system.  Because of the increasing 

capabilities of modern FPGAs, more SDR functionality can be migrated toward FPGA 

implementation and away from general purpose computers. 

 2.6.1 Coordinate Rotation Digital Computer (CORDIC) 

 Many communications systems require computation of instantaneous phase as 

part of the modulation/demodulation scheme.  Instantaneous phase is calculated using an 

arctangent operation as shown in (2.2).  There are multiple algorithms available to 

implement trigonometric function using an FPGA, Coordinate Rotation Digital Computer 

(CORDIC) being one of the most popular.  CORDIC is a hardware-efficient algorithm 

that only requires addition, subtraction and table lookup operations [2].  The CORDIC 

can operate in two modes: vectoring mode and rotation mode.  When operating in 

rotation mode, the sine and cosine values for a given angle are calculated.  This operation 

is accomplished by rotating a unit length vector from the x-axis to the given angle with 

successively smaller rotations until the given angle is reached.  The sine and cosine 

values are determined based on the direction of each angular rotation.  Using this 

technique, a vector can be converted from a polar to rectangular coordinate system.  The 

rotation mode of the CORDIC process is illustrated in Figure 2.5. 

 When operating in vectoring mode, the CORDIC operations described above are 

reversed and the magnitude and angle are generated for a given x-y coordinate pair.  

Vectoring mode operation results in a conversion from a rectangular to polar coordinate 

system.    
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Figure 2.5: Example Operation of CORDIC in Rotation Mode [14].  

 

2.6.2 Cascaded Integrator-Comb (CIC) Filter 

 In a high-speed SDR system, extracting a narrow-band signal requires down-

sampling and filtering.  For high decimation rates, a long filter with many coefficients is 

required for sufficient anti-aliasing filtering.  This can become a large bottleneck in the 

SDR system, both in terms of latency time and required hardware resources [3]. 

 The Cascaded Integrator-Comb (CIC) filter is a popular filter choice for SDR 

systems [16].  The CIC filter operates using only addition and subtraction operations; 

there is no multiplication required in the CIC design.  This makes the CIC a particularly 

attractive option for FPGA-based SDR systems where hardware resources are limited and 

multiply operations are especially costly in terms of FPGA resources.  Additionally, 

unlike most discrete filters the, CIC has a decimator built into its architecture. 

 A CIC design consists of    “integrator” addition stages followed by the same 

number of “comb” subtraction stages.  The decimator can be located either at the end of  
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Figure 2.6: Example CIC Design with      Stages [15].  The  Symbols Denote 

Modulo-2 Addition, Z-1
 Denotes a Delay by One Clock Cycle, and ↓R Denotes Down-

Sampling (Decimation). 

 

all stages or between the integrator and comb stages.  An example CIC design is shown 

in Figure 2.6.  In the case of Figure 2.6, the decimator is located between the integrator 

and comb stages. 
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III. Methodology  

Wireless communication devices are inherently insecure because the transmission 

medium can be accessed by unauthorized users.  Traditional mechanisms to secure the 

communications channel are based on encoding information at the bit level only.  These 

security mechanisms can be bypassed by forging the required bit-level credentials.  This 

research aims to characterize a hardware-based security mechanism for protecting 

wireless systems from malicious attacks.  The proposed solution generates real-time 

Radio Frequency Distinct Native Attribute (RF-DNA) fingerprints as described in 

Chapter 2. 

This chapter describes the methodology used to obtain the experimental results 

presented in Chapter 4.  The experimental X310 SDR methodology for assessing RF-

DNA fingerprinting in this research is shown in Figure 3.1. 

A simplified fingerprint generation scheme suitable for implementation on a Field 

Programmable Gate Array (FPGA) was developed.  The signal of interest for this 

research was ZigBee emissions.  A MATLAB model was created to validate the 

performance of the new prototypical fingerprint generation process.  ZigBee beacon 

requests (bursts) were experimentally collected on the X310 Software-Defined Radio 

(SDR) platform.  The collected signals were processed in MATLAB to generate       

fingerprints and evaluate Multiple Discriminant Analysis, Maximum Likelihood 

(MDA/ML) classification performance.   
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Figure 3.1: X310 SDR Methodology for Assessing RF-DNA Fingerprinting Using 

Matlab (     ), FPGA-Simulation (     ), and FPGA-Hardware (     ) Generated Fingerprints 

[30]. 

 

A modular FPGA design was planned and implemented using ModelSim FPGA 

simulation tools.  The simulation model was validated using actual ZigBee bursts 

collected by the X310 SDR.  The use of experimentally collected signals ensured realistic 

operation would be recreated as closely as possible.  The FPGA simulation-generated 

fingerprints       were exported to MATLAB for MDA/ML classification evaluation.  The 

FPGA design was compiled for use on the X310 SDR Kintex-7 FPGA and uploaded to 
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the device.  The X310 SDR collected emissions from multiple Zigbee devices and FPGA-

Hardware generated       fingerprints using the embedded FPGA.  Hardware generated       

fingerprints were transferred to MATLAB and validated using both MDA/ML and 

Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifiers. 

Topics in this chapter are presented sequentially relative to the experimental 

methodology overview illustrated in Figure 3.1.  Section 3.1 describes the X310 SDR 

configuration and setup procedures followed for the collection of radiated bursts.  Section 

3.2 describes the MATLAB model for FPGA fingerprint generation.  Section 3.3 

describes the FPGA fingerprinting implementation.  Section 3.4 describes Dimensional 

Reduction Analysis (DRA) techniques used in this research.  Section 3.5 details the 

process of device discrimination using the MDA/ML and GRLVQI classifiers.   

3.1 Experimental Signal Collection  

3.1.1 X310 SDR Receiver Configuration 

The receiver used in this research was a National Instruments (NI) Universal 

Software Radio Peripheral (USRP) X310 Software-Defined Radio (SDR).  The X310 

SDR is a commercially available, inexpensive (approximately $5,000) SDR with transmit 

and receive capabilities covering DC to 6.0 GHZ depending on daughterboard installed.  

For this research, the SBX-40 daughterboard was installed and provided a receive 

frequency range of 400-4400 MHz with a maximum instantaneous bandwidth of    

        .  A block diagram of the X310 SDR receiver architecture is shown in Figure 

3.2. 
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Figure 3.2: X310 SDR Receiver Architecture [6]. 

 

 The RF emitting devices used in this research included      AVR 

RZUSBsticks.  RZUSBstick is a device designed by Atmel Corporation for the 

development, debugging and demonstration of IEEE 802.15.4, 6LoWPAN, and ZigBee 

[1].  The RZUSBstick uses the Universal Serial Bus (USB) for configuration, 

transmission and reception of ZigBee data.  

The RZUSBstick devices were connected to a computer running the open-source 

tool zbstumbler.  Zbstumbler is an application from the killerbee suite, a popular 

collection of software tools used to manipulate ZigBee devices [21].  Zbstumbler was 

used to configure the devices to broadcast a ZigBee beacon request at a fixed interval 

indefinitely.  The ZigBee channel used in this research was number NZC = 26 having a 

center frequency of             .  Channel NZC = 26 was chosen for consistency with  
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Figure 3.3: Normalized Frequency Domain Response of the SBX-40 Daughterboard 

Anti-Aliasing Filter (Positive Frequencies Only). 

 

prior related work [20] to help mitigate interference from IEEE 802.11 WiFi.  The SBX-

40 instantaneous bandwidth is             which was sufficient for collecting 

             ZigBee emissions as described in Section 2.1.  The one-sided 

frequency domain response of the SBX-40 anti-aliasing filter is shown in Figure 3.3. 

As illustrated in Figure 3.3, the bandwidth of the SBX-40 analog anti-aliasing 

filter is                 .  The collected ZigBee emissions were down-converted to 

an Intermediate Frequency (IF) using the analog mixer/anti-aliasing filter on the SBX-40.  

The complex waveform was sampled at        MS/s by the 14-bit dual channel 

Analog to Digital Converter (A/D) on the X310 SDR.  The digital complex waveform 

was then sent to the FPGA to be digitally down-converted to baseband.  The Digital 

Down-Conversion (DDC) chain in the FPGA is shown in Figure 3.4. 
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Figure 3.4: Digital Down-Conversion (DDC) Chain of X310 SDR with Received Signal 

Path in Red. 

 

The DDC chain implemented uses a Coordinate Rotation Digital Computer 

(CORDIC) based mixer to down-convert the digitized signal to baseband.  The CORDIC 

algorithm was implemented in rotation mode as described in Chapter 2.  A Cascaded 

Integrator-Comb filter (CIC) was used to perform low-pass filtering and downsampling 

on the complex digital waveform.  Unlike other common filters, the CIC has a decimator 

built into its architecture, simplifying the downsampling process.  The CIC was chosen 

for this hardware application given its computational simplicity which only requires 

addition and subtraction operations for the CIC filter design.  The CIC filter block 

diagram is shown in Figure 3.5. 
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Figure 3.5: 4-Stage       CIC Filter [15]. 

 

The CIC design consists of      “integrator” addition stages followed by 

     “comb” subtraction stages and an       decimator.  The CIC was implemented 

as described in [8].  The normalized CIC frequency response is shown in Figure 3.6. 

The CIC decimates the             signal to a new sample rate of    

      .  The sample rate of           is suitable for the previously described 

             bandwidth of ZigBee channel NZC = 26.  The sample rate of    

       was experimentally deemed sufficient for correct demodulation of ZigBee 

emissions.  The CIC also performs filtering on the complex waveform.  The digital down-

conversion chain implemented also contains selectable half-band filters for use with 

different sample rates, but they are not selected in this research.  The baseband signal is 

then routed out of the X310 SDR FPGA and to the computer via Ethernet.  

3.1.2 X310 SDR Receiver Configuration 

All collections were made within a shielded Ramsey STE6000 test enclosure to 

ensure a low-noise collection environment for initial proof-of-concept demonstration.  

The commercial shielded test enclosure used is shown in Figure 3.7. 
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Figure 3.6: Normalized Frequency Response of 4-stage       CIC Filter. 

 

 

 

 

Figure 3.7: Ramsey STE6000 Shielded Test Enclosure [19]. 
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The Ramsey STE6000 was chosen because it was designed for use with 

Industrial, Scientific and Medical (ISM) band signals such as Bluetooth, WiFi and 

ZigBee [19].  The STE6000 provides over 90.0 dB of attenuation at           

according to manufacturer specification.  Additionally, the interior has an RF absorbent 

foam coating that attenuates by          , mitigating multipath interference.  The 

STE6000 was equipped with Ethernet and USB connections so it can remain closed while 

controlling the X310 SDR and ZigBee device, respectively.    

The ZigBee Device Under Test (DUT) was connected to the internal USB port of 

the STE6000.  The X310 SDR was positioned such that its antenna was          from 

the DUT.  The STE6000 was closed and sealed.  The computer was used to configure the 

X310 SDR FPGA with the proper firmware.  For signal collection, the receiver mode 

firmware was flashed onto the FPGA.  For RF-DNA fingerprint generation, the 

fingerprint generation mode firmware was flashed onto the FPGA.  Zbstumbler software 

was initiated to configure the DUT to broadcast ZigBee beacon requests at ZigBee 

channel NZC = 26 with a rate of           (bursts per second).  The X310 SDR was 

then configured to initiate the start of signal collection.  Received signals (or generated 

fingerprints) were then streamed over Ethernet to the computer where they were saved to 

the hard-disk.  This process was repeated for all      devices. 

3.2 MATLAB Model for FPGA Fingerprint Generation 

To demonstrate fingerprint generation in real-time on the FPGA platform, it was 

desirable to reduce the computational complexity of previous fingerprint generation 

methods.  FPGA operations occur in real-time and on synthesized hardware.  Certain 
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operations that can be easily calculated with enough time in MATLAB are costly in fixed 

hardware resources on an FPGA.  For this reason, a reduced-complexity fingerprinting 

model was developed with MATLAB as a reduced-complexity subset of the traditional 

fingerprinting process. 

3.2.1  Burst Detection 

Accurate burst detection of the target signal is critical to the RF-DNA process.  If 

the collected bursts are not properly aligned, the statistical features will cross the region 

boundaries, which will degrade process performance process.  Therefore, the first step in 

the RF-DNA process is the alignment of collected bursts.  A burst detection algorithm 

was developed that could operate in real-time, with low latency and with low 

computational complexity.  A squaring-smoothing amplitude detection algorithm was 

applied to the real-valued waveform Re of the incoming signal as follows: 

 
     

                                 

  
  (3.1) 

The resultant value   is compared to a threshold value  .  When       , the 

start of the burst is indicated as         to collect the transient turn-on region of the 

transmitted waveform.  Though the Re component was used to detect the burst, similar 

results can be obtained using the signal Im component.  A representative output of the 

smoothing algorithm is shown in Figure 3.8. 

The threshold value   was empirically chosen to give consistent burst detection 

performance.  Knowing the duration of the ZigBee preamble and the starting sample 

number, we can select the beginning and end of the ZigBee preamble waveform.  The 

detected preamble was then extracted from the signal for fingerprint generation. 
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Figure 3.8: Output of Squaring-Smoothing Burst Detection Algorithm. 

 

3.2.2 Fingerprint Generation 

The ZigBee waveform preamble is the region of interest (ROI) for ZigBee 

fingerprint generation.  The preamble duration is standardized to be             per 

the IEEE 802.15.4 ZigBee specification [9].  At a sample rate of           this 

corresponds to a length of        samples.  The ROI is further separated into       

equal length subregions.  Because fingerprints are calculated in real-time on the FPGA, 

odd-numbered subregions ([1, 3, 5, 7, 9]) are received and processed during the time of 

even numbered subregions ([2, 4, 6, 8, 10]).  Therefore, the even numbered subregions 

are excluded from the product fingerprint.  This process yields a fingerprint comprised of 

features based on      subregions.  Figure 3.9 shows a ZigBee amplitude response 

collected by the X310 SDR with       subregions highlighted.  
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Figure 3.9: Experimentally Collected ZigBee Preamble with       Subregions. 

 

The collected amplitude waveform shown in Figure 3.9 is        samples (130 

µs) in length, which is approximately equal to the standard length of             from 

the IEEE specification.  In the simplified MATLAB model, the following time-domain 

responses were chosen for fingerprint generation: 

1. Real-valued (Re[n]) time domain waveform, 

2. Imaginary-valued (Im[n]) time domain waveform, 

3. Instantaneous phase ([n]) given by 

 
            

     

     
   (3.2) 
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4. Instantaneous amplitude (a[n]) given by 

                        . (3.3) 

For each of      subregions of the      ,      ,      and      waveforms,  

the variance (σ
2
) of each respective waveform was calculated and concatenated to form 

fingerprint vector       as follows: 

            

       
      

       

      

       
      

       

  . (3.4) 

Fingerprint vector       was then rounded to 32-bit fixed-point decimal to match 

the 32-bit output capability of the X310 SDR.  A total of         bursts were 

transmitted by each of      devices and received by the X310 SDR at a sample rate of 

         .  A fingerprint vector       was generated for each burst received, and an 

MDA/ML classification model was built and evaluated as described in Chapter 2.  

3.3 FPGA Fingerprint Generation 

The X310 SDR has a Xilinx Kintex-7 FPGA which contained the DDC chain as 

described in Section 3.1.  A fingerprint generator was designed for the Kintex-7 with the 

purpose of implementation on the X310 SDR FPGA.  The fingerprint generator design 

was then simulated with ModelSim FPGA simulation software to generate the FPGA-

Simulation fingerprint vector      .  Generation of FPGA-hardware fingerprint vector       

was then accomplished by synthesizing the fingerprint generator design within the X310 

SDR FPGA. 

3.3.1 FPGA Fingerprint Generator Design 

The block diagram for the developed FPGA fingerprint generator design is shown 

in Figure 3.10. 
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Figure 3.10: Fingerprint Generator Design as Implemented on X310 SDR FPGA.  

 

The design was developed to match MATLAB model functionality as described 

in Section 3.2.  A CORDIC module was implemented in vectoring mode as described in 

Chapter 2.  The CORDIC module was used to calculate the instantaneous phase      and 

instantaneous amplitude      from       and      .  The functional component groups 

of the FPGA fingerprinting design are: 

 

1. A squaring-smoothing amplitude-based burst detector as described in Section 

3.2.1. 

2. A CORDIC module operating in vectoring mode as described in Chapter 2. 

3. Variance calculating modules for each of      instantaneous feature 

waveforms.  Variance calculators were implemented in parallel.  Because of 

parallel implementation, all      variance values for a given subregion are 

calculated simultaneously. 
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After calculation of      variance values for the given subregion, results were  

sent out of the X310 SDR for concatenation into the full-dimensional fingerprint vector. 

3.3.2 Simulated FPGA Fingerprint Generation 

To characterize any coloration effects inherent to the FPGA-implemented 

fingerprint generator design, a simulation model was desired.  The fingerprint design as 

described in Section 3.3.1 was implemented in a ModelSim FPGA simulation 

environment.  Experimentally collected ZigBee bursts were used as input to the 

ModelSim simulated design, and the simulation-generated fingerprints       were collected 

and stored for classification performance analysis.  This simulation setup is shown in 

Figure 3.11. 

To build a classification model as described in Chapter 2, a total of         

bursts were simulated as collected from each of     .  Simulation-generated 

fingerprints       were collected and used for model development results as presented in 

Chapter 4.  

3.3.3 Hardware FPGA Fingerprint Generation 

To characterize the real-time performance of the FPGA-based fingerprint 

generator, the fingerprint generator module was inserted at the end of the X310 SDR 

DDC chain and instantiated in the actual FPGA hardware.  The block diagram for the 

resultant X310 SDR hardware chain is shown in Figure 3.12. 

As shown in Figure 3.12, the FPGA-based hardware implementation allows for 

hardware-generated fingerprints       to be streamed to the computer as they are received 

by the X310 SDR.  A total of         bursts were collected and processed from each  
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Figure 3.11: ModelSim FPGA Simulation Environment for Generation of       from X310 

SDR Collected ZigBee Bursts. 

 

 

of      to generate FPGA-Hardware fingerprints      .  The resultant fingerprints were 

used to build a model and evaluate classification performance as presented in Chapter 4. 

3.4 Feature Set Dimensional Reduction 

The complete RF-DNA fingerprint used in this research is based on      

subregions with      instantaneous feature waveforms.  The length    of a full-

dimensional fingerprint is:  

          (3.5) 

Therefore, a full-dimensional fingerprint of length       was used in this 

research.  A process known as Dimensional Reduction Analysis (DRA) was performed to 

limit the number of features used for model development.  The purpose of DRA is to 

determine which features can be eliminated while maintaining the desired classification  
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Figure 3.12: X310 SDR Hardware Chain with FPGA-based Fingerprint Generator [6]. 

 

 

performance level.  This research compared two methods of DRA: qualitative and 

quantitative.  

Qualitative DRA was performed by selecting all features from a particular feature 

subset: a-only, ϕ-only, Re-only or Im-only.  Each dimensionally reduced feature subset 

was used to form      length fingerprints based only on that subset. 

Quantivative DRA was performed by selecting only the top-5 most relevant 

features as determined by the GRLVQI process.  All DRA feature subsets are displayed 

in Table 3.1. 

 

Table 3.1: Dimensionally Reduced Feature Sets used for MDA/ML Classification 

DRA Method Feature Set    

Full Dimensional All 20 

Qualitative a-only 5 

Qualitative ϕ-only 5 

Qualitative Re-only 5 
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Qualitative Im-only 5 

Quantative GRLVQI Top-5 5 

 

3.5 Device Classification 

After              and        fingerprints were generated from         bursts each, 

and for each of      devices, they were input to the MDA/ML or GRLVQI device 

discrimination process.  MDA/ML and GRLVQI were performed as described in Chapter 

2.  The fingerprints were first separated into equal length training and testing fingerprint 

sets.  Training and testing fingerprint sets were taken as interleaved (odd and even) 

subsets of the complete fingerprint set.  The training set was then input to the MDA/ML 

and GRLVQI classifiers where the classification models were developed.  A  -fold 

cross-validation process was used by both classifiers to determine the “best” model using 

a     value.  Once models were developed by both classifiers, the testing set of 

fingerprints was used to assess classification performance.  Fingerprints were then 

classified in a “Looks most like?” assessment, assigning each testing fingerprint to the 

device it was estimated to be.  The above steps were repeated for dimensionally reduced 

fingerprint vectors.  These results are presented in Chapter 4. 

3.6 Device ID Verification 

While device classification performed a “Looks most like?” comparison, device 

ID verification provides a “Looks how much like?” assessment.  In the target air monitor 

application, verification will be used to reject “rogue” devices that are not authorized 



 

35 

network access.  This rogue rejection will enhance network security and augment 

traditional bit-level security techniques.  

Device ID verification was implemented as described in Chapter 2.  After model 

development, each testing fingerprint was compared to each of      devices on which 

the model was based.  The verification test statistics    provides a measure of similarity 

between the compared pair of devices.  The test statistic    is then compared to a 

verification threshold value    to make a binary decision of accepting or rejecting the 

device’s claimed identity.  By comparing only authorized devices to one another and 

varying the threshold value   , the relationship between True Verification Rate (TVR) 

and False Verification Rate (FVR) was explored.  TVR is the percentage of instances 

where a device is correctly authorized after claiming its own identity.  FVR is the 

percentage of instances where a device is authorized after claiming an identity that is not 

its own.  

An additional case was explored where “rogue” devices were introduced to the 

system claiming the identity of authorized devices.  The relationship between TVR and 

Rogue Accept Rate (RAR) was determined.  RAR is the percentage of instances where a 

rogue device is incorrectly accepted as an authorized device.  Results for TVR vs. FVR 

and TVR vs. RAR are presented in Chapter 4.   
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IV. Results and Analysis 

4.1 Introduction 

This chapter provides results for Radio Frequency Distinct Native Attribute (RF-

DNA) discrimination of ZigBee devices, to include comparison of fingerprinting 

performance using MATLAB-generated fingerprints, Field Programmable Gate Array 

(FPGA)-generated fingerprints, and fingerprints generated in a simulated FPGA 

environment.  Additional results are analyzed, including authorized and rogue device 

verification using a Multiple Discriminant Analysis, Maximum Likelihood (MDA/ML) 

mode.  Classification performance is also analyzed using reduced dimensional feature 

sets (proper subsets of full dimensional feature sets) as well as FPGA timing and 

utilization results.  

This chapter is organized as follows: Section 4.2 presents Time-Frequency (T-F) 

analysis of experimentally collected ZigBee signals that were collected using the X310 

Software-Defined Radio (SDR).  Section 4.3 presents classification results of the 

MDA/ML model comparing three fingerprint generation methods: 1) simulated-based 

MATLAB generated fingerprints (     ), 2) simulation-based FPGA generated fingerprints 

(     ), and 3) hardware-based X310 FPGA-generated fingerprints (     ).  Section 4.4 

presents authorized and rogue device model verification results.  Section 4.5 presents 

classification performance results using both qualitative Dimensional Reduction Analysis 

(DRA) as well as the quantitative DRA based on feature relevance ranking using a 

Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) process.  
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Finally, Section 4.6 provides timing results for the FPGA hardware design as well as 

device capacity utilization. 

4.2 Time Frequency (T-F) Analysis 

A Time-Frequency (T-F) analysis was conducted to investigate the spectral and 

temporal characteristics of experimentally collected ZigBee signals that were collected 

using the X310 SDR.  Two types of T-F analysis were performed to validate the 

experimental collection setup, including 1) analysis of the X310 SDR internal 

background noise and 2) analysis of experimentally collected ZigBee emission 

characteristics and comparison with standard specifications. 

4.2.1 X310 Background Noise Analysis 

The X310 SDR receiver was operated inside a shielded test enclosure without any 

other devices present.  These collections were used to characterize internal noise to the 

X310 SDR.  Additionally, this analysis showed the effectiveness of the shielded test 

enclosure in attenuating outside radiation.  The noise environment was sampled at a 

sample rate of           and center frequency of             .  These collection 

parameters remained constant for all collections and analysis conducted the research.  

The resultant normalized Power Spectral Density (PSD) for a one minute X310 

background noise collection is shown in Figure 4.1. 
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Figure 4.1: Normalized X310 SDR Background Noise PSD. 

 

As shown in Figure 4.1, the noise environment has a small peak at   = 2.4861 

GHz.  The results obtained in this research are not affected by the internal noise of the 

receiver because it is present equally for all devices. 

4.2.2 Collected ZigBee Emission Analysis 

Using the collection methodology described in Section 3.3, ZigBee beacon 

requests (bursts) were collected with the X310 SDR.  The time domain response of an 

experimentally collected Zigbee burst is illustrated in Figure 4.2: 
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Figure 4.2: Representative X310 SDR Collected ZigBee Burst Amplitude Response 

Showing Preamble and Payload Regions. 

 

As described in Section 2.1, the ZigBee preamble consists of 8 Offset Quadrature 

Phase Shift Keying (O-QPSK) modulated symbols.  Figure 4.3 shows the preamble 

response of a typical ZigBee burst, divided into eight symbols.  The emissions were 

collected near-baseband to enhance the visibility of the information in the figure. 

 ZigBee device transmissions were initiated by controlling the device with a 

computer running the Zbstumbler script.  The zbstumbler script is an open source 

application from the killerbee suite [7], a popular collection of software tools used to 

manipulate ZigBee devices.  The ZigBee devices were configured to broadcast at a 

transmission rate of          .  The frequency domain response for a          

collection is shown in Figure 4.4. 
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Figure 4.3: ZigBee Preamble Response from Fig. 4.2 Showing 8 O-QPSK Symbols. 

 

Figure 4.4: Frequency Response Over Time of      Baseband ZigBee Bursts. 
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Although the burst rate was configured to be          , the actual rate of burst 

transmission was         .  A total of       bursts were collected at sample rate 

          and down-converted to baseband.  The       bursts were then overlaid 

and averaged.  The normalized Power Spectral Density (PSD) of the resultant waveform 

is shown in Figure 4.5. 

 As described in Section 2.1, the specified bandwidth of a ZigBee channel is 

            .  Therefore, the single-sided baseband bandwidth of a ZigBee channel 

is             .  There is a 7 dB decrease in power at             .  These 

results are illustrated in Figure 4.5. 

4.3 Classification Model Development 

Using the X310 SDR operating in fingerprint generation mode inside a shielded 

test enclosure, a total of         ZigBee bursts were collected per device.  The 

collected Signal-to-Noise Ratio was on the order of              for all of the 

     devices.  A total of         fingerprints were generated by the X310 SDR.  

Using MDA, a classification model was developed based on the fingerprints of Atmel 

RZUSBstick devices 1, 2 and 3.  The model was developed using          training 

fingerprints per device, extracted from a larger pool of         total fingerprints, with 

full-dimensional fingerprints generated on the FPGA.  

A K-fold cross-validation process was used to determine the “best” MDA model 

using a     value.  A model was developed that maximized Euclidian distance 

between device/class means.  That model was used as the projection matrix   .   



 

42 

 

Figure 4.5: Normalized PSD of       Averaged Baseband ZigBee Bursts. 

 

Projection matrix    was then multiplied by each of          testing 

fingerprints per device to project the fingerprint into a 2-dimensional Fisher space.  The 

model accuracy was quantified using average percent correct classification (%C) based 

on testing fingerprint classification performance for each device, as well as a cross-class 

%C for all devices.  These results are shown in Figure 4.6.  

 

 

 



 

43 

 

Figure 4.6: MDA/ML %C for each Class/Device and the Cross-Class/Device Average 

%C at              using          Fingerprints per Class/Device. 

 

In addition to cross-class    as shown in Figure 4.6, the tendency for devices to 

be incorrectly classified as each other was also quantified and reflected in the 

classification confusion matrix as shown in Table 4.1. 

As shown in Table 4.1, all devices achieved an arbitrary benchmark of correct 

classification rate       .  Additionally, while device 3 achieved        , 

devices 1 and 2 “looked like” each other, resulting in some misclassification between the  

two devices.  New models for      and      devices were created to assess the 

performance of the system with additional devices.  Tables 4.2 and 4.3 show the 

confusion matrices for      and      class problems, respectively.  
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Table 4.1: Confusion Matrix of      Class Problem at             . 

In
p
u
t 

Classified As 

 Dev 1 Dev2 Dev 3 

Dev 1 98.6% 1.4% 0% 

Dev 2 2.2% 97.8% 0% 

Dev 3 0% 0% 100% 
 

 

Table 4.2: Confusion Matrix of      Class Problem at             . 
In

p
u
t 

Classified As 

 Dev 1 Dev 2 Dev3 Dev 4 

Dev 1 98.8% 1.2% 0% 0% 

Dev 2 1.8% 98.2% 0% 0% 

Dev 3 0% 0.2% 99.6% 0.2% 

Dev 4 0% 0% 0% 100% 
 

 

Table 4.3: Confusion Matrix of      Class Problem at             . 

In
p
u
t 

 Classified As 

 Dev 1 Dev 2 Dev 3 Dev 4 Dev 5 

Dev 1 98.6% 1.4% 0% 0% 0% 

Dev 2 1.2% 98.8% 0% 0% 0% 

Dev 3 0% 0% 99.8% 0.2% 0% 

Dev 4 0% 0% 0.2% 99.8% 0% 

Dev 5 0% 0% 0% 0% 100% 
 

 

4.4 Dimensional Reduction Analysis (DRA) 

Because of the algorithm used by MDA/ML in generating a classification model, 

the specific features which give the best classification performance cannot be determined.  

Dimensional Reduction Analysis (DRA) techniques can be used to identify a selected 

subset of features that provides acceptable classification performance.  Dimensional 

reduction can be achieved using qualitative methods or quantitative methods.  Examples 

of qualitatively selected feature subsets include amplitude-only (Amp), phase-only (Phz), 

Real-only (Re) and Imaginary-only (Im).  A GRLVQI classifier, described in Section 2.4, 

was also used to quantitatively select a subset of features based on their respective 
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influence on correct device classification.  Figure 4.7 shows classification performance 

results of an initial trial comparing qualitatively selected features and the top-ranked 

     quantitatively selected features as selected by GRLVQI.  The best performance of 

        is obtained by using the full-dimensional set of    = 20 features.  

Additionally, the FPGA hardware performance was contrasted with the performance of a 

simulated FPGA environment.  These results are also shown in Figure 4.7. 

Additional FPGA hardware trials were performed for a total of         trials.  

The performance results from         trials are shown with 95% confidence intervals 

(CI) in Figure 4.8.  The mean %C for each DRA subset is also shown in Figure 4.8 with 

95% confidence intervals omitted because they are within the vertical extent of the 

markers. 

As shown in Figure 4.8, the full-dimensional       fingerprints consistently 

exceeded the arbitrary benchmark of %C = 90% for all         trials.  Cross-trial 

mean results for    = 5 Amp, Re, and Im are statistically equivalent based on 95% CI.  

Finally, performance was poorest for the    = 5 Phz DRA fingerprints which consistently 

yielded the lowest %C classification performance. 

4.5 Device Verification and Rogue Detection 

Device verification allows for a comparison between devices to describe “how 

much alike” the devices are.  By making this comparison, a relationship can be found 

between the True Verification Rate (TVR) and False Verification Rate (FVR). TVR is the 

rate at which a device, claiming to be itself, is correctly authorized.  FVR is the rate at 

which an unauthorized device, claiming to be the authorized device, is incorrectly  
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Figure 4.7: Comparison of Qualitative (Phz, Amp, Re, Im) and Quantitative (LVQ) DRA 

Performance with Full Dimensional Performance using      ,      , and       Generated 

Fingerprints.  The Number of Features per Feature Set is Indicated in Parenthesis. 

 

Figure 4.8: Average Percent Correct Classification (%C) with 95% Confidence Intervals 

for a Total of         Independent Experimental FPGA Hardware Trials.  The Cross-

Trial Mean Shows that Only the Full-Dimensional       Feature Set Achieves the 

Arbitrary        Benchmark. 
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authorized.  By adjusting the threshold at which a device is successfully authorized, the 

TVR can be increased; however this could also increase the FVR.  

An      class model was developed using the MDA/ML classifier for 

fingerprints generated with FPGA hardware.  This model used a full-dimensional feature 

set of      .  The model was trained using           fingerprints per device.  An 

additional          fingerprints per device were used to compare how much device 1 

looks like device 1, device 2 looks like device 2, etc.  These results are illustrated in 

Figure 4.9.  The dashed line in Figure 4.9 represents an arbitrary benchmark of TVR>0.9.   

The benchmark of TVR = 0.9 resulted in the corresponding FVR = 0.02 for 

devices     and    .  Classification performance for device     is perfect 

throughout this trial. 

Using the same      class model and full-dimensional       feature set, 

devices     and      were introduced as rogue devices.  These      additional 

devices were individually compared with every authorized device.  The Rogue Accept 

Rate (RAR) is the rate at which rogue devices, posing as authorized devices, are 

incorrectly accepted as the claimed identity.  The relationship between TVR and RAR is 

shown in Figure 4.10.  The dashed black line in Figure 4.10 represents an arbitrary 

benchmark of        .  At this benchmark, nearly all cases achieve perfect 

classification performance of         and        .  Only the “4 looks like 3” case 

has imperfect performance of          at          
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Figure 4.9: Full-Dimensional (     ) Authorized Device Verification Results for 

MDA/ML Model and Signals at             . 

 

Figure 4.10: Full-Dimensional (     ) Rogue Device Rejection Results for MDA/ML 

Model and Signals at             . 
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The performance of qualitative DRA for Amp-only, Re-only and Im-only was 

statistically equivalent based on 95% CI.  The performance of Phz-only was significantly 

lower than the other qualitative DRA feature subsets based on 95% CI.  Therefore, Amp-

only was used to generate a computationally light model for device ID verification. 

  The same verification process described previously was repeated for a reduced-

dimension      feature set containing Amp-only fingerprints.  An arbitrary benchmark 

of         and         is used for Authorized Device assessment in Figure 4.11a. 

Similarly, an arbitrary benchmark of         and         is used for Rogue 

Rejection assessment in Figure 4.11b.  With this reduced-dimension      feature set, 

performance was significantly reduced.  The FPGA implementation of the full-

dimensional       fingerprint generator consumed only 17% of the total X310 FPGA 

resources.  Implementing a less computationally complex model is not justified due to the 

poor performance results.   
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(a) 

 
(b) 

Figure 4.11: Authorized device and rogue rejection for Amp-Only DRA feature set for 

MDA/ML Model and Signals at             . 
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4.6 FPGA Performance 

FPGA simulation software was used with the fingerprint generation design to 

determine the latency in generating fingerprints from a received ZigBee transmission.  A 

ZigBee beacon request collected with the X310 in radio mode was input to the FPGA 

simulation of the fingerprint generation design so that the exact timing characteristics 

could be examined.  Because the FPGA operates synchronously on a fixed clock, 

simulated timing performance will exactly match FPGA hardware timing performance.  

Figure 4.12 displays the fingerprint generation latency of the X310 FPGA design.  Figure 

4.12 shows the real-valued waveform of the ZigBee beacon request with the ROI (Region 

of Interest) and Payload highlighted.  The vertical red line in Figure 4.12 indicates the 

point at which fingerprint generation is complete.  As illustrated in Figure 4.12, 

fingerprint generation completes before most of the Zigbee payload has been received.  

As shown in Figure 4.12, the latency time taken by the FPGA to generate a 

complete fingerprint of a single ZigBee beacon request is short in relation to the length of 

the payload.  Because of the short latency in fingerprint generation time, in future work 

the payload could be selectively accepted or rejected based on fingerprinting results in 

real time, with no loss in Zigbee receiver data throughput.  Figure 4.13 displays this 

fingerprint generation latency in greater detail. 
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ROI Payload

Fingerprint Generation Complete

 

Figure 4.12: Processing Latency of X310 FPGA Real-Time Fingerprint Generation.  
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Figure 4.13: X310 FPGA Fingerprint Generation Processing Latency of       after 

Reception of ROI. 
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As shown in Figure 4.13, the complete       fingerprint is successfully 

generated at       after the ROI is received.  The        latency of generating the 

fingerprint is minimal when compared with the         duration of the payload.  

Assuming a similarly short latency for device classification on FPGA hardware, the 

envisioned air monitor could be configured to selectively reject ZigBee transmissions 

from unauthorized devices in real-time.     
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V. Summary and Conclusions 

5.1 Research Summary 

ZigBee networks are currently in place for functions such as monitoring medical 

devices, relaying electrical usage information to utility companies, and maintaining home 

automation systems.  Due to the sensitive nature of many ZigBee applications, 

maintaining a high level of security is essential.  Traditional security techniques for 

ZigBee networks are predominantly based on presenting and verifying device bit-level 

credentials (keys).  While effective to some degree, bit-level-only security is becoming 

increasingly insufficient and ZigBee networks are vulnerable to attack by any 

unauthorized rogue device that can obtain and present bit-level credentials for an 

authorized device.  Even without prior knowledge of the correct key, replay attacks can 

still be employed in which a packet transmitted by an authorized device is collected and 

later replayed by an unauthorized device [18].  

 Previous related research in [5,20,23] has shown that an additional Physical layer 

(PHY) of security can be applied using Radio Frequency Distinct Native Attribute (RF-

DNA) fingerprinting to augment ZigBee bit-level security.  RF-DNA exploitation 

involves generating a uniquely-identifiable “fingerprint” from PHY waveform features 

extracted from emissions of a particular device.  The RF-DNA fingerprint is then used to 

discriminate devices from one another, even when identical (valid or false) bit-level 

credentials are presented.  While previous AFIT research has demonstrated the 

effectiveness of MATLAB simulation-based RF-DNA classification of ZigBee devices, 
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this research provides the next step towards achieving real-time device classification and 

verification.  A complete RF-DNA based security solution for ZigBee devices in the form 

of an air monitor is proposed in [23].  The air monitor would be physically co-located 

with ZigBee devices and actively accept or reject signals from other ZigBee devices 

based on their fingerprint signatures.  The purpose of this research was to demonstrate 

feasibility of the air monitor concept using an Ettus Research X310 Software-Defined 

Radio (SDR) hosting a Kintex-7 Field Programmable Gate Array (FPGA). 

5.2 Findings and Contributions 

 An X310 hardware-based design was developed and evaluated in support of 

taking the next step towards achieving reliable air monitoring capability.  The design and 

demonstration was based on a reduced-complexity MATLAB model of the traditional 

RF-DNA fingerprinting process.   

 The reduced-complexity MATLAB model included extraction of RF-DNA 

fingerprint features from ZigBee preamble responses.  The preamble was divided into 

subregions, over which variance-only statistical features were calculated for the 

instantaneous Real (     ), Imaginary (     ), Phase (    ) and Amplitude (    ) 

time-domain responses.  A full-dimensional fingerprint therefore contained a total of 

      features.  MATLAB-generated fingerprints (     ) were created for each of 

     AVR RZUSBstick ZigBee devices and Multiple Discriminant 

Analysis/Maximum Likelihood (MDA/ML) classification performed.  The average cross-

class accuracy (  ) for the initial trial using full-dimensional       fingerprints exceeded 
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an arbitrary benchmark of        at a collected Signal-to-Noise Ratio (    ) 

            .  

 An FPGA-compatible fingerprinting design was developed based on the 

MATLAB mode.  The FPGA model was simulated using ModelSim simulation software.  

Experimentally collected ZigBee waveforms were collected using the X310 SDR which 

produced baseband sequence signals (        ) that were inputs to the FPGA simulation 

to recreate actual operation.  The FPGA Simulated (     ) fingerprints were created and 

classified using the same MDA/ML classifier.  In this case, the arbitrary        

benchmark was exceeded for an initial trial with             .   

 The simulated FPGA design was integrated into the X310 FPGA hardware by 

instantiating the fingerprint generator following the Digital Down-Conversion (DDC) on 

the X310 Kintex-7 FPGA.  The FPGA-Hardware (     ) fingerprints were generated in 

real-time and streamed to the X310 interface computer.  MDA/ML classification 

performance was assessed for a total of         independent experimental trials, the 

results of which consistently exceeded the arbitrary        benchmark. 

 Following full-dimensional (     ) assessments, Dimensional Reduction 

Analysis (DRA) was employed and classification performance evaluated using 

dimensionally reduced       feature sets.  Using DRA, it was determined that 

fingerprints containing only on      ,      , or      features produced statistically 

similar performance of       , where statistical equivalence is based on 95% 

Confidence Intervals (CI) across         independent experimental trials.  Fingerprints 

containing only           features produced statistically poorer classification 
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performance of        across the         independent experimental trials.  While 

the full-dimensional       feature set consistently achieved the arbitrary        

benchmark, none of the      DRA dimensionally reduced feature sets achieved the 

benchmark.  As designed and implemented, the full-dimensional fingerprint generator 

only utilized 7% of the X310 Kintex-7 FPGA resources.  Because of the low amount of 

FPGA resources required to implement the full-dimensional fingerprint generator, and 

the statistically poorer    performance, the dimensionally reduced      fingerprint 

model is not justified in this application. 

 While the MDA/ML classification provided a “looks most like?” best match 

assessment, device ID verification was performed to conduct a “looks how much like?” 

assessment using the      authorized devices claiming to be themselves.  A Euclidian 

distance measure of similarity    was calculated and compared to a verification threshold 

value    to make a binary accept-reject decision based on the device’s claimed identity.  

By varying threshold   , the relationship between True Verification Rate (TVR) and 

False Verification Rate (FVR) was analyzed.  TVR is the percentage of instances where a 

device is correctly granted network access after claiming its own identity.  FVR is the 

percentage of instances where a device is incorrectly granted network access after 

claiming an identity that is not its own.  For the       full-dimensional feature set, an 

arbitrary benchmark of         and         was achieved for all authorized 

devices.    For      DRA feature sets one of the three devices achieved this benchmark 

while all other devices failed.  For final proof-of-concept demonstration, two rogue 

devices were introduced and presented claimed IDs matching each of the authorized 
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device IDs (a total of 6 rogue assessment scenarios).  A comparison of TVR with Rogue 

Accept Rate (RAR) was made where RAR is the percentage of instances where a device 

is incorrectly granted network access after claiming the identity of an authorized device.  

For the full-dimensional case, an arbitrary benchmark of         and         was 

achieved for all 6 rogue scenarios.     

 Implementation of the full-dimensional fingerprint generator required only 7% of 

the Xilinx Kintex-7 FPGA resources.  Therefore, even the mid-level Kintex-7 used in the 

X310 has plenty of room for expanding the air monitor’s capability.  The implemented 

design was able to generate a full-dimensional fingerprint in        after the end of the 

ZigBee preamble was detected.  This latency is a small fraction of the          ZigBee 

payload duration.  Because of the relatively short fingerprint generation latency, an 

unauthorized device transmission can easily be rejected by the air monitor in real-time 

with no loss in ZigBee data throughput from authorized devices.  

5.3 Recommendations for Future Research 

This research demonstrates that a low-cost SDR platform with an on-board FPGA is  

viable for air monitor implementation.  As used here for initial proof-of-concept, the 

RZUSBstick ZigBee devices were successfully discriminated using RF-DNA fingerprints 

generated on the X310 SDR FPGA.  The results here set the stage for additional 

hardware-oriented research avenues, including: 

1. Increase RF-DNA Functionality on FPGA:  This research is the first step towards 

a complete implementation of the air monitor.  FPGA capabilities can be 

expanded by implementing additional RF-DNA functionality that was not 
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addressed here, including MDA model development and ML classification.  

Device ID verification can also be implemented on the FPGA hardware. 

2. Consider Alternate Test Statistics:  Traditional RF-DNA fingerprint generation 

involves generating a myriad of high-dimensional test statistics on a general-

purpose computer having virtually unlimited time and computing resources.  In 

migrating some of these more promising test statistics to a real-time FPGA 

implementation having fixed hardware resources, it will be necessary to consider 

which test statistics offer the best performance and which can be implemented 

within hardware resource constraints.   

3. Perform a Real-Time Demonstration:  The culmination of AFIT’s wireless RF-

DNA Fingerprinting research will be successful implementation and 

demonstration of an air monitor.  This includes demonstrating that bit-level 

security can be augmented by PHY RF-DNA fingerprinting to provide enhanced 

security in real-time with enhanced speed, efficiency and robustness. 
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