144 research outputs found

    A New Multi-Resource cumulatives Constraint with Negative Heights

    Get PDF
    This paper presents a new cumulatives constraint which generalizes the original cumulative constraint in different ways. The two most important aspects consist in permitting multiple cumulative resources as well as negative heights for the resource consumption of the tasks. This allows modeling in an easy way new scheduling and planning problems. The introduction of negative heights has forced us to come up with new propagation algorithms and to revisit existing ones. The first propagation algorithm is derived from an idea called sweep which is extensively used in computational geometry; the second algorithm is based on a combination of sweep and constructive disjunction, while the last is a generalization of task intervals to this new context. A real-life timetabling problem originally motivated this constraint which was implemented within the SICStus finite domain solver and evaluated against different problem patterns

    Al0.52In0.48P avalanche photodiodes for soft X-ray spectroscopy

    Get PDF
    The performance of Al0.52In0.48P avalanche photodiodes was assessed as soft X-ray detectors at room temperature. The effect of the avalanche gain improved the energy resolution and an energy resolution (FWHM) of 682 eV is reported for 5.9 keV X-rays

    Chemical Composition, Antioxidant Potentials, and Calcium Oxalate Anticrystallization Activity of Polyphenol and Saponin Fractions from Argania spinosa L. Press Cake

    Get PDF
    A wide range of biological properties and a potent therapeutic and prophylactic effect on chronic diseases are all present in Argania spinosa L. press cake. The aim of this research is to valorize the anticrystallization properties against calcium oxalate crystals of Argania spinosa L. press cake fractions and identify its bioactive components. Chemical species identification was performed using GC-MS analysis. The turbidimetric model was used to investigate crystallization inhibition in vitro. Infrared spectroscopy technique was used to characterize the synthesized crystals. Furthermore, both DPPH and FRAP methods were used to assess antioxidant activity. The results show that the fractions are equally important in crystallization inhibition percentages of calcium oxalate crystals. For saponin and polyphenol fractions, the inhibition percentages are in the orders of 83.49% and 82.83%, respectively. The results of the antioxidant activity by DPPH method show that the two fractions are equally important in the elimination of free radicals; the inhibition percentages were 77.87 +/- 4.21 and 89.92 +/- 1.39 for both polyphenols and saponins, respectively. FRAP method showed that the absorbance increases proportionally with concentration, and the absorbance are almost similar for both fractions and reach maximum values in the orders of 0.52 +/- 0.07 and 0.42 +/- 0.03, respectively, for saponins and polyphenols. These findings demonstrate that both fractions are rich in bioactive chemicals and have an anticrystallization capacity, allowing them to be employed for the curative and prophylactic effects against urolithiasis.Peer reviewe

    Chemical Composition, Antioxidant Potentials, and Calcium Oxalate Anticrystallization Activity of Polyphenol and Saponin Fractions from Argania spinosa L. Press Cake

    Get PDF
    A wide range of biological properties and a potent therapeutic and prophylactic effect on chronic diseases are all present in Argania spinosa L. press cake. The aim of this research is to valorize the anticrystallization properties against calcium oxalate crystals of Argania spinosa L. press cake fractions and identify its bioactive components. Chemical species identification was performed using GC–MS analysis. The turbidimetric model was used to investigate crystallization inhibition in vitro. Infrared spectroscopy technique was used to characterize the synthesized crystals. Furthermore, both DPPH and FRAP methods were used to assess antioxidant activity. The results show that the fractions are equally important in crystallization inhibition percentages of calcium oxalate crystals. For saponin and polyphenol fractions, the inhibition percentages are in the orders of 83.49% and 82.83%, respectively. The results of the antioxidant activity by DPPH method show that the two fractions are equally important in the elimination of free radicals; the inhibition percentages were 77.87 ± 4.21 and 89.92 ± 1.39 for both polyphenols and saponins, respectively. FRAP method showed that the absorbance increases proportionally with concentration, and the absorbance are almost similar for both fractions and reach maximum values in the orders of 0.52 ± 0.07 and 0.42 ± 0.03, respectively, for saponins and polyphenols. These findings demonstrate that both fractions are rich in bioactive chemicals and have an anticrystallization capacity, allowing them to be employed for the curative and prophylactic effects against urolithiasis

    Chemical Composition, Antioxidant Potentials, and Calcium Oxalate Anticrystallization Activity of Polyphenol and Saponin Fractions from Argania spinosa L. Press Cake

    Get PDF
    A wide range of biological properties and a potent therapeutic and prophylactic effect on chronic diseases are all present in Argania spinosa L. press cake. The aim of this research is to valorize the anticrystallization properties against calcium oxalate crystals of Argania spinosa L. press cake fractions and identify its bioactive components. Chemical species identification was performed using GC–MS analysis. The turbidimetric model was used to investigate crystallization inhibition in vitro. Infrared spectroscopy technique was used to characterize the synthesized crystals. Furthermore, both DPPH and FRAP methods were used to assess antioxidant activity. The results show that the fractions are equally important in crystallization inhibition percentages of calcium oxalate crystals. For saponin and polyphenol fractions, the inhibition percentages are in the orders of 83.49% and 82.83%, respectively. The results of the antioxidant activity by DPPH method show that the two fractions are equally important in the elimination of free radicals; the inhibition percentages were 77.87 ± 4.21 and 89.92 ± 1.39 for both polyphenols and saponins, respectively. FRAP method showed that the absorbance increases proportionally with concentration, and the absorbance are almost similar for both fractions and reach maximum values in the orders of 0.52 ± 0.07 and 0.42 ± 0.03, respectively, for saponins and polyphenols. These findings demonstrate that both fractions are rich in bioactive chemicals and have an anticrystallization capacity, allowing them to be employed for the curative and prophylactic effects against urolithiasis

    Measurement of the Lifetime Difference in the B_s^0 System

    Get PDF
    We present a study of the decay B_s^0 -> J/psi phi We obtain the CP-odd fraction in the final state at time zero, R_perp = 0.16 +/- 0.10 (stat) +/- 0.02 (syst), the average lifetime of the (B_s, B_sbar) system, tau (B_s^0) =1.39^{+0.13}_{-0.16} (stat) ^{+0.01}_{-0.02} (syst) ps, and the relative width difference between the heavy and light mass eigenstates, Delta Gamma/Gamma = (Gamma_L - Gamma_H)/Gamma =0.24^{+0.28}_{-0.38} (stat) ^{+0.03}_{-0.04} (syst). With the additional constraint from the world average of the B_s^0$lifetime measurements using semileptonic decays, we find tau (B_s^0)= 1.39 +/- 0.06 ~ps and Delta Gamma/\Gamma = 0.25^{+0.14}_{-0.15}. For the ratio of the B_s^0 and B^0 lifetimes we obtain tau(B_s^0)/tau(B^0)} = 0.91 +/- 0.09 (stat) +/- 0.003 (syst).Comment: submitted to Phys. Rev. Lett. FERMILAB-PUB-05-324-

    Measurement of Semileptonic Branching Fractions of B Mesons to Narrow D** States

    Get PDF
    Using the data accumulated in 2002-2004 with the DO detector in proton-antiproton collisions at the Fermilab Tevatron collider with centre-of-mass energy 1.96 TeV, the branching fractions of the decays B -> \bar{D}_1^0(2420) \mu^+ \nu_\mu X and B -> \bar{D}_2^{*0}(2460) \mu^+ \nu_\mu X and their ratio have been measured: BR(\bar{b}->B) \cdot BR(B-> \bar{D}_1^0 \mu^+ \nu_\mu X) \cdot BR(\bar{D}_1^0 -> D*- pi+) = (0.087+-0.007(stat)+-0.014(syst))%; BR(\bar{b}->B)\cdot BR(B->D_2^{*0} \mu^+ \nu_\mu X) \cdot BR(\bar{D}_2^{*0} -> D*- \pi^+) = (0.035+-0.007(stat)+-0.008(syst))%; and (BR(B -> \bar{D}_2^{*0} \mu^+ \nu_\mu X)BR(D2*0->D*- pi+)) / (BR(B -> \bar{D}_1^{0} \mu^+ \nu_\mu X)\cdot BR(\bar{D}_1^{0}->D*- \pi^+)) = 0.39+-0.09(stat)+-0.12(syst), where the charge conjugated states are always implied.Comment: submitted to Phys. Rev. Let

    A search for W bb and W Higgs production in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present a search for W b \bar{b} production in p \bar{p} collisions at sqrt{s}=1.96 TeV in events containing one electron, an imbalance in transverse momentum, and two b-tagged jets. Using 174 pb-1 of integrated luminosity accumulated by the D0 experiment at the Fermilab Tevatron collider, and the standard-model description of such events, we set a 95% C.L. upper limit on W b \bar{b}productionof6.6pbforbquarkswithtransversemomentapTb>20GeVandbbˉseparationinpseudorapidityazimuthspaceDeltaRbb>0.75.Restrictingthesearchtooptimizedbbˉmassintervalsprovidesupperlimitson production of 6.6 pb for b quarks with transverse momenta p_T^b > 20 GeV and b \bar{b} separation in pseudorapidity-azimuth space Delta R_bb > 0.75. Restricting the search to optimized b \bar{b} mass intervals provides upper limits on WHproductionof9.0 production of 9.0-12.2pb,forHiggsbosonmassesof10512.2 pb, for Higgs-boson masses of 105-$135 GeV.Comment: 7 pages, 4 figures, 1 table, submitted to Physical Review Letter
    corecore