
A New Multi-Resource cumulatives Constraint
with Negative Heights

Nicolas Beldiceanu and Mats Carlsson

S I C S , Lägerhyddsvägen 18, SE-75237 Uppsala, Sweden
{nicolas,matsc}@sics.se

May 16 2001
SICS Technical Report T2001:11

ISSN 1100-3154
ISRN: SICS-T--2001:11-SE

Abstract. This paper presents a new scumulative constraint which generalizes
the original cumulative constraint in different ways. The two most important as-
pects consist in permitting multiple cumulative resources as well as negative
heights for the resource consumption of the tasks. This allows modeling in an
easy way new scheduling and planning problems. The introduction of negative
heights has forced us to come up with new propagation algorithms and to revisit
existing ones. The first propagation algorithm is derived from an idea called
sweep which is extensively used in computational geometry; the second algo-
rithm is based on a combination of sweep and constructive disjunction, while
the last is a generalization of task intervals to this new context. A real-life time-
tabling problem originally motivated this constraint which was implemented
within the SICStus finite domain solver and evaluated against different problem
patterns.

Keywords: Resource Constraint Project Scheduling, Cumulative Constraint,
Sweep, Compulsory Part.

A New Multi-Resource cumulatives Constraint
with Negative Heights

Nicolas Beldiceanu and Mats Carlsson

S I C S , Lägerhyddsvägen 18, SE-75237 Uppsala, Sweden
{nicolas,matsc}@sics.se

Abstract. This paper presents a new scumulative constraint which generalizes
the original cumulative constraint in different ways. The two most important as-
pects consist in permitting multiple cumulative resources as well as negative
heights for the resource consumption of the tasks. This allows modeling in an
easy way new scheduling and planning problems. The introduction of negative
heights has forced us to come up with new propagation algorithms and to revisit
existing ones. The first propagation algorithm is derived from an idea called
sweep which is extensively used in computational geometry; the second algo-
rithm is based on a combination of sweep and constructive disjunction, while
the last is a generalization of task intervals to this new context. A real-life time-
tabling problem originally motivated this constraint which was implemented
within the SICStus finite domain solver and evaluated against different problem
patterns.

1 Introduction

Within the constraint community, the cumulative constraint was originally introduced

in [1] in order to model scheduling problems where one has to deal with a single
resource of limited capacity. It has the following definition:

[] [] []()LimitHeightHeightDurationDurationOriginOrigin nnn ,,..,,,..,,,..,cumulative 111 , (1)

where []nOriginOrigin ,..,1 , []nDurationDuration ,..,1 and []nHeightHeight ,..,1 are

non-empty lists of non-negative domain variables1, and Limit is a non-negative inte-
ger. The cumulative constraint holds if the following condition is true:

∑
+<≤

≤∈∀
jjj DurationOriginiOriginj

j LimitHeighti
|

�� . (2)

From an interpretation point of view, the cumulative constraint matches the single
resource-scheduling problem [14], where nOriginOrigin ,..,1 correspond to the start of

each task, nDurationDuration ,..,1 to the duration of each task, and nHeightHeight ,..,1 to

1 A domain variable is a variable that ranges over a finite set of integers. The statement

Var::min..max, where min and max are two integers such that min is less than or equal to
max, creates a domain variable Var for which the initial domain is made up from all values
between min and max inclusive.

the amount of resource used by each task. The cumulative constraint specifies that, at
any instant i , the summation of the amount of resource of the tasks that overlap i ,
does not exceed Limit .

Over the past years the cumulative constraint was progressively integrated within

most of the current constraints systems [10], [11], [20], and extended by introducing
elastic [11] or continuous [16] resource consumption. It was also used with success as
an essential component of a large number of real-life applications involving resource
constraints. However, feedback resulting from handling industrial problems has
pointed out several serious modeling limitations. Perhaps the most serious limitation
concerns the fact that quite often we have more that one cumulative resource [2].
Planning problems [3], [5] also require dealing with tasks for which we don’t know
the resource in advance. A second major restriction concerns the fact that the amount
of resource used by each task is non-negative. By allowing both negative and positive
values for the amount of resource used by a task we open the scumulative constraint to

producer-consumer problems where a given set of tasks has to cover another set of
tasks (i.e. a demand profile). A major modeling advantage comes from the fact that
the profile to cover does not necessarily need to be completely fixed in advance which
is actually the case for current approaches.

For all the previously mentioned reasons, we present a new constraint called,
scumulative , which generalizes the original cumulative constraint in 4 different ways:

− First, it allows expressing the fact that we have several cumulative resources and
that each task has to be assigned to one of these resources.

− Second, the amount of resource used by each task is a domain variable which can
take positive or negative values.

− Third, one can either enforce the cumulated consumption to be less than or equal,
or greater than or equal to a given level.

− Finally, on a given resource, the previous constraint on the cumulated resource
consumption holds only for those time-points that are overlapped by at least 1 task.

The next section introduces the scumulative constraint as well as several typical

utilizations. Sect. 3 provides a detailed description of the main propagation algorithm.
It also gives the flavor of an algorithm which combines sweep and constructive dis-
junction in order to derive additional pruning. Finally the last section presents the first
experimental results on a large selection of typical patterns of the scumulative con-

straint.

2 The cumulatives Constraint

The scumulative constraint has the form ()ConstraintResourcesTasks ,,scumulative , where:

− Tasks is a collection of tasks where each task has a Machine , an Origin , a
Duration , a Height and an End attribute; Duration is a non-strictly negative do-
main variable, while Machine , Origin , Height and End are domain variables
which may be negative, positive or zero.

− Resources is a collection of resources where each resource has an Identifier and a
given Limit ; the Identifier and Limit attributes are fixed integers which may be
negative, positive or zero; Moreover the Identifier is a unique value for each re-
source; the Machine attribute of a task is a domain variable for which the possible
values correspond to values of the Identifier attribute.

− Constraint is the less or equal (i.e. ≤) or the greater or equal (i.e. ≥) constraint.
In the rest of this paper we denote by C the number of items of a collection C

and []ia the value of the attribute a of the i th item of collection C .
The scumulative constraint holds if the two following conditions are both true:

 [] [] [] []tEndtDurationtOriginTaskst =+∈∀ :,1 . (3)

[]Taskst ,1∈∀ , [] [][]1, −∈∀ tEndtOrigini :

Let m be the unique value such that: [] []mIdentifiertMachine = ,

[]()
[] []
[] []

[]mLimitConstraintjHeight

tMachinejMachine

jEndijOrigin
j

∑

⎩
⎨
⎧

=
<≤

|

. (4)

Condition (3) imposes for each task t the fact that its end is equal to the sum of its
origin and its duration. When Constraint is equal to ≤ (respectively ≥), Condition (4)
enforces that, for each instant i that is overlapped by at least one task t , such that t
is assigned to resource m , the sum of the Height attribute of all tasks j , that both are
assigned on resource m and overlap instant i , is less or equal (respectively greater or
equal) than the Limit 2 attribute of resource m .

Fig. 1. Typical uses of the scumulative constraint

2 When Constraint is equal to ≥ (respectively ≤), the Limit attribute should be interpreted as

the minimum level to reach on a given resource (respectively the maximum capacity of a
given resource).

1 2 3 4 5 6
0
1
2
3
4

time

resource

1 2 3 4 5 6
0
1
2
0
1

time

(A) (B)

1

2

3

4

(D)

3
1

2

1 2 3 4 5 6
0
1
2
3
4

(C)

2
3 4

5

1

(E)
1 2 3 4 5 6

0
1
2
3
4
5
6
7

1 4

2

3

(F) (G)
1 2 3 4 5 6

-4
-3
-2
-1
0
1
2
3

1

3

2

4
5
6

1 2 3 4 5 6
-2
-1
0
1
2

-1
0
1

(H)

2

1 3

4
5

7
6

time time time

time time

resource resource

time 1 2 3 4 5 6
0
1
2
3
0
1
2
3

resource resource

resource resource

1 2 3 4 5 6
0
1
2
3
4

1 2

3 4

resource

3
1

2

5

4 ≤ 7

≤ 3
≤ 1

≥ 2 ≥ 2

≤ 4

≤ 4

≤ 3

≥ 0

≥ 0

≥ 0

Fig. 1 gives 8 ground instances3 of scumulative , all related to a typical utilization of

the constraint. Each resource is represented as a drawing where the horizontal and the
vertical axes respectively correspond to the time and to the amount of used resource.
A task is represented as a rectangle for which the length and the height respectively
match the duration and the absolute value of the amount of resource used by the task.
The position of the leftmost part of a rectangle on the time axis is the start of the task.
Tasks with positive or negative heights are respectively drawn on top or below the
time axis, so that we can look both to the cumulated resource consumption of the
tasks with a positive height and to the cumulated consumption of the tasks with a
negative height. Finally the Constraint parameter and the Limit attribute are men-
tioned to the right of each resource.
− Part (A) is the classical original cumulative constraint described in [1]. In the

Resources parameter we have introduced one single resource, which has value 1 as
identifier and 4 as its maximum capacity.

− Part (B) is an extension of the original cumulative constraint where we have more

than one single resource.
− Part (C) is the at least variant of the cumulative constraint available in CHIP. This

variant enforces to reach a minimum level between the first4 and the last5 utiliza-
tion of the resource. In order to express the previous condition we create a dummy
task of height 0 (represented by the thick line between instants 2 and 5) for which
the start and the end respectively correspond to the earliest start and to the latest
end of the different tasks to schedule. For this purpose we respectively use a mini-
mum and maximum6 constraints [6].

− Part (D) is a new variant of the previous case where the “at least” constraint ap-
plies only for the instants that are overlapped by at least one task.

− Part (E) is a producer-consumer problem [18] where tasks 1,2 represent producers,
while tasks 3,4 are consumers. On one side, a producer task starts at the earliest
start and produces a quantity equal to its height at a date that corresponds to its
end. On the other side, a consumer task ends at the latest end and consumes a quan-
tity equal to its height at a date that matches its start. The resource can be inter-
preted as a tank in which one adds or removes at specific points in time various
quantities. The scumulative constraint enforces that, at each instant, one does not

consume more than what is currently available in the tank.
− Part (F) is a generalization of the previous producer-consumer problem where we

have two tanks. As for the previous example the scumulative constraint enforces no

negative stocks on both tanks.
− Part (G) describes a covering problem where one has to cover a given workload by

a set of tasks. The workload can be interpreted as the number of persons required

3 Ground instances correspond to solutions of the scumulative constraint. However one should

keep in mind that all the attributes of a task may not be fixed when the constraint is posted.
4 The minimum of the earliest start of the tasks.
5 The maximum minus one of the latest end of the tasks.
6 The minimum(M,{X1,..,Xn}) (respectively maximum(M,{X1,..,Xn}) constraint holds if M is

the minimum (respectively maximum) value of variables X1,..,Xn.

during specific time intervals, while a task can be interpreted as the work per-
formed by a group of persons. The height of the initially fixed tasks (i.e. tasks 1
and 2) that represent the workload is modelled with negative numbers, while the
height of the tasks related to the persons (i.e. tasks 3,4,5,6) is positive. The cover-
ing constraint is imposed by the fact that, at each point in time,
the scumulative constraint enforces the cumulated height, of the tasks that overlap

this point, to be greater than or equal to 0: at each point in time the number of
available persons should be greater than or equal to the required demand expressed
by the work-load to cover. A thick line indicates the cumulated profile resulting
from the negative and positive heights.

− Finally, part (H) generalizes (G) by introducing 2 distinct workloads to cover.

3 Propagation Algorithms

The purpose of this section is to introduce two algorithms used for implementing
the scumulative constraint. The first algorithm, based on the idea of sweep, is required

for checking7 the constraint and for doing some basic pruning, while the second algo-
rithm performs additional pruning by using constructive disjunction [12], [19]. We
have also generalized task intervals [4], [11], [13] to the case where negative resource
consumption (i.e. production of resource) is also allowed. Since the “at least” and “at
most” sides of the scumulative constraint are symmetric, we only focus on the “at

least” side8 where the constraint enforces for each resource to reach a given minimum
level.

Before going further into the presentation of the algorithms, let us first introduce
some notions which will be used in the different algorithms. A task t of origin

[]tOrigin and end []tEnd has a compulsory part9 [15] if its latest start []()tOriginmax
is strictly less than it earliest end []()tEndmin . For such a task, we call support of the
compulsory part the interval []() []()[]1min,max −tEndtOrigin .

Within the different algorithms, this set of functions access domain variables:
− ()varmin and ()varmax respectively return the minimum and maximum value of a

given domain variable var .
− ISINT(var) returns 1 if the variable var is fixed, and 0 otherwise.
− FIXVAR(valvar,) fixes variable var to value val .

− REMOVEVALUEVAR(valvar,) removes value val from the domain variable var .

7 It is based on a necessary condition that is also sufficient when all the attributes of the differ-

ent tasks are fixed.
8 To get the algorithm for the “at most” side one has to replace in the forthcoming algorithms

“max(Height[t])” by “min(Height[t])”, “max(Height[t])<” by “min(Height[t])>”, “<Limit[r]”
by “>Limit[r]”, “≥Limit[r]” by “≤Limit[r]”, “ADJUSTMINVAR(Height[t]” by “ADJUSTMAX-

VAR(Height[t]” and “max(0,Limit[r])” by “min(0,Limit[r])”.
9 When Constraint is equal to ≥ (respectively ≤), the compulsory part of a task t is the maxi-

mum (respectively minimum) resource consumption of that task together with the interval
[max(Origin[t]),min(End[t])−1].

− ADJUSTMINVAR(valvar,) and ADJUSTMAXVAR(valvar,) respectively adjust the

minimum and maximum value of a given domain variable var to value val .
− PRUNEINTERVALVAR(uplowvar ,,) removes the interval of values []uplow, from a

given domain variable var .

The last five functions return fail if a contradiction was found (i.e. the domain of
the pruned variable var becomes empty), or return delay otherwise.

3.1 The Sweep Algorithm

The sweep algorithm is based on an idea that is widely used in computational geome-
try and that is called sweep [8, page 22], [17, pages 10-11]. Within constraint pro-
gramming, sweep has also been used in [7] for implementing different variants of the
non-overlapping constraint.

In dimension 2, a plane sweep algorithm solves a problem by moving a vertical
line from left to right. The algorithm uses two data structures:
− A data structure called the sweep-line status, which contains some information

related to the current position ∆ of the vertical line,
− A data structure named the event point series, which holds the events to process,

ordered in increasing order according to the abscissa.
The algorithm initializes the sweep-line status for the starting position of the verti-

cal line. Then the line “jumps” from event to event; each event is handled and inserted
or removed from the sweep-line status. In our context, the sweep-line scans the time
axis on a given resource r in order to build an optimistic10 cumulated profile (i.e. the
sweep-line status) for that resource r and to perform check and pruning according to
this profile and to the limit attribute of resource r . This process is repeated for each
resource present in the second argument of the scumulative constraint. Before going

further into any detail, let us first give the intuition of the sweep algorithm on the
simple case where all tasks are fixed.

Consider the illustrative example given in Fig. 2, which is associated to instance
(D) of Fig. 1. Since all the tasks of the previous constraint are fixed, we want to check
that, for each time point i where there is at least one task, the cumulated height of the
tasks that overlap i is greater than or equal to 2. The sweep-line status records the
following counters heightsum _ and tasknb _ , which are initially set to 0;

heightsum _ is the sum of the height of the tasks that overlap the current position ∆ of
the sweep-line, while tasknb _ is the number of such tasks.

Since we don’t want to check every time-point, the event points correspond only to
the start and to the end of each task:
− For the start of each task t we generate a start-event, which will respectively in-

crement by []tHeight and 1 the two previous counters heightsum _ and tasknb _ .
− For the end of each task t we generate an end-event, which will respectively dec-

rement by []tHeight and 1 heightsum _ and tasknb _ .

10 Since the constraint enforces to reach a given minimum level, we assume that hopefully,

each task will take its maximum height.

Fig. 2. Illustrative example of the sweep algorithm when all tasks are fixed

We initially generate all these events, sort them in increasing order and finally
handle them as explained before. Each time we finish to handle all the events associ-
ated to a given date, and only when tasknb _ is strictly greater than 0, we check that

heightsum _ is greater than or equal to the required minimum level.
The next paragraph introduces the sweep-line status and the event points we con-

sider when the tasks are not yet fixed, while Sect. 3.1.2 explains how to prune the
attributes of the tasks according to the sweep-line status.

3.1.1 Checking for Failure

Given that we want to catch situations where, for sure there is no solution to
the scumulative constraint, the sweep algorithm assumes that each task will take its

maximum height11 in order to facilitate to reach the required minimum level. For a
given resource r , let us first introduce the following sets that will be used later on:
− CHECKr is the set of tasks, that simultaneously have a compulsory part, are as-

signed to r , and have a maximum height that is strictly less than []()rLimit,0max .
− BADr is the set of tasks, that have a compulsory part, are assigned to resource r

and have a strictly negative maximum height.
− GOODr is the set of tasks, that may be, or are actually assigned to resource r and

have a maximum height that is strictly greater than 0.

Time-Points to Check Since the scumulative constraint considers only those in-

stants where there is at least one task, the sweep algorithm has to perform a check
only for those instants, that correspond to the support of the compulsory part of a task
assigned to resource r . Moreover no check is required for those instants where we
only have compulsory part of tasks for which the maximum height is greater than or
equal to []()rLimit,0max . This is because the cumulated maximum height of such
tasks will always be greater than or equal to the minimum required level []rLimit . A
first counter called rtasknb _ is associated to the sweep-line status of resource r . It

11 Remember that we present the “at least” side where, for each resource, the scumulative con-

straint enforces to reach a given minimum level.

resource

time
Event points

Minimum level to reach
for those instants where
there is at least one task

Current position
of the sweep line: 3

Sweep-line
status

• nb_task=2
• sum_height=3

0
1
2
3
4

Task 1

Task 2 Task 3

• nb_task=1
• sum_height=2

• nb_task=0
• sum_height=0

• nb_task=1
• sum_height=4

• nb_task=0
• sum_height=0

1 2 4 5

gives the number of tasks of the set CHECKr for which the compulsory part intersects

the current position ∆ of the sweep-line.

Building the Optimistic Profile For a given resource r , the optimistic cumulated
profile is obtained by considering two kinds of contributions:
− The contributions of the tasks that belong to the set BADr; since their maximum

height is strictly negative, the contribution of these tasks in the cumulated profile is
bad from the point of view of the minimum level to reach. This is why we count
such contribution only for those instants where it occurs for sure, that is for the
support of the compulsory part of such tasks.

− The contributions of the tasks that belong to GOODr; since it is strictly positive,

the contributions in height of these tasks in the cumulated profile can help to reach
the required minimum level. This is why, it is counted for all instants where such a
task can be placed, that is between its earliest start and its latest end.

The sum of the previous contributions is recorded in a second counter, denoted

rheightsum_ , which is also associated to the status of the sweep-line corresponding to

resource r . It gives for the current position of the sweep-line, the sum of the maxi-
mum height of the tasks t that satisfy one of the following conditions:
− Task t belongs to BADr and []() []()tEndtOrigin minmax <∆≤ ,

− Task t belongs to GOODr and []() []()tEndtOrigin maxmin <∆≤ .

Recording the Tasks to Prune In order to prepare the pruning phase we store
the tasks that can intersect in time the current position ∆ of the sweep line. For this
purpose the sweep-line status contains an additional stack

[]rr prunetopprunestack _..1_ 12 that records these tasks.

Table 1. Summary of the different types of events

 Conditions for Generating an Event Generated Events

max(Origin[t]) < min(End[t]) and max(Height[t]) < max(0,Limit[r])

and min(Machine[t]) = max(Machine[t]) = r

〈check, t, max(Origin[t]), 1〉

〈check, t, min(End[t]), -1〉

max(Origin[t]) < min(End[t]) and

min(Machine[t]) = max(Machine[t]) = r and max(Height[t]) < 0

〈profile, t, max(Origin[t]), max(Height[t])〉

〈profile, t, min(End[t]), −max(Height[t])〉

r∈Machine[t] and max(Height[t]) > 0 〈profile, t, min(Origin[t]), max(Height[t])〉

〈profile, t, max(End[t]), −max(Height[t])〉

r∈Machine[t] and ¬(ISINT(Origin[t]) and ISINT(End[t]) and
 ISINT(Machine[t]) and ISINT(Height[t]))

〈pruning, t, min(Origin[t]), 0〉13

Updating the Sweep-Line Status Table 1 depicts the events that update the dif-
ferent constituents of the sweep-line status introduced so far. We respectively call

12 rprunetop _ indicates how many tasks are recorded within the array rprunestack _ [] .
13 There is no event for removing the tasks that can’t be pruned any more (i.e. the tasks that

can’t intersect the current position of the sweep-line); this is achieved by the pruning proce-
dure itself by compacting the stack rprunestack _ .

check , profile or pruning event, an event modifying rtasknb _ , rheightsum_ or

[]rr prunetopprunestack _..1_ . We choose to encode these events by using the follow-

ing fields incrementdatetasktype ,,, , where:

− type tells whether we have a check , a profile or a pruning event; in case of a
pruning event the content of the slot increment is irrelevant,

− task indicates the task which generate the event,
− date specifies the location in time of the event,
− increment gives the quantity to add to rtasknb _ or to rheightsum_ .

The Sweep Algorithm The previous events are initially generated and sorted in
increasing order of their respective date. For each date, Algorithm 1 (lines 9, 10)
process all the corresponding events; in addition when rtasknb _ is different from 0 it

checks that the height rheightsum_ of the optimistic cumulated profile is greater than

or equal to the minimum level of resource r (lines 7, 12).

 1 Set nb_taskr, sum_heightr and top_pruner to 0.

 2 Extract the next event &〈type,task,date,increment〉.14
 3 Set d to date.
 4 while 〈type,task,date,increment〉≠NULL do
 5 if type≠pruning then
 6 if d≠date then
 7 if nb_taskr>0 and sum_heightr<Limit[r] then return fail.

 8 Set d to date.
 9 if type=check then Add increment to nb_taskr else Add increment to sum_heightr

10 else Set top_pruner to top_pruner+1 and set stack_pruner[top_pruner] to task.

11 Extract the next event &〈type,task,date,increment〉.
12 if nb_taskr>0 and sum_heightr<Limit[r] then return fail.

Alg. 1. Main loop of the sweep algorithm on a resource r

3.1.2 Pruning the Attributes of a Task

 1 if nb_taskr=0 or sum_heightr−contribution[t]15 ≥ Limit[r] then return delay.

 2 if FIXVAR(Machine[t], r)=fail
 3 or ADJUSTMINVAR(Origin[t], up−max(Duration[t])+1)=fail
 4 or ADJUSTMAXVAR(Origin[t], low)=fail
 5 or ADJUSTMAXVAR(End[t], low+ max(Duration[t]))=fail
 6 or ADJUSTMINVAR(End[t], up+1)=fail

 7 or ADJUSTMINVAR(Duration[t], min(up−max(Origin[t])+1, min(End[t])−low))=fail then return fail.

Alg. 2. Pruning the attributes of task t in order to enforce to cover an interval [low,up]

At each position of the sweep-line related to resource r we perform the three follow-
ing kind of pruning16 of the attributes of the tasks that both can be assigned to re-

14 We assume that we get a pointer to an event.
15 contribution[t] stands for the saved maximum height of task t that was added to sum_heightr.
16 These three types of pruning are inserted just after line 7 and line 12 of Algorithm 1.

source r and can overlap the interval [low,up] where low and up+1 are respectively
the current and the next position of the sweep-line:
− A first pruning is tried out for those tasks t with a maximum height greater than 0

(Algorithm 2). It consist in pruning the Machine, Origin, End and Duration attrib-
utes of those tasks which are absolutely required (line 1) in order to reach a given
minimum level []rLimit on interval [low,up]. More precisely we fix the Machine
attribute to resource r (line 2), and prune the minimum and maximum values of
the Origin and End attributes (lines 3-6) in order to remove values for which there
is no way to cover all instants of interval [low,up]. We also adjust the minimum
duration (line 7) for a similar reason.

− A second pruning is undertaken for those tasks with a maximum height strictly less
than []()rLimit,0max (Algorithm 3). It consists in pruning the Machine, Origin,
End and Duration attributes of those tasks t which would prevent to reach the
minimum required level (line 1) on interval [low,up] if they would simultaneously
overlap the previous interval and utilize resource r . For such tasks we first forbid
to assign them on resource r if they overlap for sure interval [low,up] (lines 2-3).
Conversely, if they are assigned to r we prune the Origin, End and Duration at-
tributes in order to prevent any overlapping with interval [low,up] (lines 4-9).

 1 if sum_heightr−contribution[t]+ max(Height[t]) < Limit[r] then

 2 if min(End[t])>low and max(Origin[t])≤ up and min(Duration[t])>0 then
 3 if REMOVEVALUEVAR(Machine[t], r)=fail then return fail.

 4 else if ISINT(Machine[t])17 then
 5 if min(Duration[t])>0 then
 6 if PRUNEINTERVALVAR(Origin[t], low−min(Duration[t])+1, up)=fail
 7 or PRUNEINTERVALVAR(End[t], low+1, up+min(Duration[t]))=fail then return fail.
 8 Set maxd to max(low−min(Origin[t]), max(End[t])−up−1, 0).
 9 if ADJUSTMAXVAR(Duration[t]), maxd)=fail then return fail.

Alg. 3. Pruning the attributes of task t in order to forbid to intersect an interval [low,up]

− Finally a third pruning (Algorithm 4) is performed for all tasks t that are assigned
to resource r (line 1) and that overlap for sure interval [low,up] (line 2). It consists
in removing from the Height attribute those values which would prevent to reach
the minimum required level on interval [low,up] (line 3).

 1 if ISINT(Machine[t])
 2 and min(End[t])>low and max(Origin[t])<up and min(Duration[t])>0 then
 3 if ADJUSTMINVAR(Height[t], Limit[r]−(sum_heightr−contribution[t]))=fail then return fail.

Alg. 4. Pruning the minimum resource consumption of task t according to interval [low,up]

A Complete Illustrative Example of Pruning Let us illustrate the previous
pruning rules on the instance given in Example 1, where all the 3 types of pruning
occur simultaneously. Lines 1 and 2 declare the minimum and maximum value for
each attribute of the tasks. Lines 3 to 6 state a scumulative constraint where we have

two tasks 1t and 2t (see lines 3,4) and two resources (see lines 5,6). The third argu-

ment indicates that we have to reach a given minimum level on those 2 resources.

17 Since by hypothesis we only try to prune tasks that can be assigned to resource r, the test

ISINT(Machine[t]) means that task t is actually assigned to resource r.

1. M1::1..1 O1::1..2 D1::2..4 E1::3..6 H1::-1..1

2. M2::1..2 O2::0..6 D2::0..2 E2::0..8 H2::-3..4

3. cumulatives({machine- M1 origin- O1 duration- D1 end- E1 height- H1,

4. machine- M2 origin- O2 duration- D2 end- E2 height- H2},

5. {identifier-1 limit-4,

6. identifier-2 limit-3}, ≥)
Example 1. An instance that triggers the three different types of pruning

Fig. 3. Pruning according to the optimistic profile

When inspecting interval []2,2 while making the first sweep on resource 1 (see part

(A) of Fig. 3), we have { }11 tCHECK = , =1BAD ∅, { }211 ,ttGOOD = and the sweep-line

status is as follows: ,1_ 1 =tasknb 5_ 1 =heightsum . The contributions of tasks 1t and

2t in the optimistic profile are respectively equal to their maximum height, namely 1

and 4. Since task 1t is assigned to resource 1 and has a compulsory part on interval

[]2,2 , we have to reach the required minimum level 4 on interval []2,2 . Because 2t is

the only candidate that can help to reach this minimum level 4, Algorithm 2 performs
the pruning mentioned in the first six lines of part (B) in order to force 2t both to be

assigned to resource 1 and to overlap interval []2,2 . Since now tasks 1t and 2t are

both assigned to resource 1, and overlap for sure interval []2,2 , Algorithm 4 adjusts
the minimum height of 1t and 2t (see the last 2 lines of part (B)) in order to reach the

minimum required level 4.

A second sweep on resource 1 (see part (C) of Fig. 3) is performed in order to satu-
rate and part (D) describes the corresponding pruning.

M2 = 1 (line 2 of Algorithm 2)

min(O2) ≥ 1 (line 3 of Algorithm 2)

max(O2) ≤ 2 (line 4 of Algorithm 2)

max(E2) ≤ 4 (line 5 of Algorithm 2)

min(E2) ≥ 3 (line 6 of Algorithm 2)

min(D2) ≥ 1 (line 7 of Algorithm 2)

min(H2) ≥ 3 (line 3 of Algorithm 4)

min(H1) ≥ 0 (line 3 of Algorithm 4)

0
1
2
3
4

time

resource

1 2 3 4 5 6 7 8

5

0

Contribution
of task 1

Support of compulsory
part of task 1

Current position
of the sweep-line

(A) Optimistic profile during first sweep on resource 1 (B) Pruning according to interval [2,2] on resource 1

[5,7]∉E1 (line 7 of Algorithm 3)

max(D1) ≤ 3 (line 9 of Algorithm 3)

(C) Optimistic profile during second sweep on resource 1 (D) Pruning according to interval [4,5] on resource 1

Current position
of the sweep-line

0
1
2
3
4

time

resource

1 2 3 4 5 6 7 8

5

0

Contribution
of task 1

Support of compulsory
part of task 1

Minimum level
to reach

Contribution
of task 2

Minimum level
to reach

Contribution
of task 2

• nb_task=1
• sum_height=5

• nb_task=0
• sum_height=1

≥ 4

≥ 4

Complexity of the Sweep Algorithm Let m be the number of resources, n the
total number of tasks and p the number of tasks for which at least one attribute is not
fixed. First note that updating the sweep-line status and performing the pruning ac-
tions (Algorithms 2, 3 and 4) 18 is done in ()1O . Second, given that a task can generate
at most 7 events (see Table 1), the total number of events is proportional to the num-
ber of tasks n . Since we first sort all these events and scan through them in order to
update the sweep-line status the complexity of the check procedure on a resource is

()nnO log⋅ . As the total number of calls to the pruning algorithms is less than or equal

to the total number of events and since during a pruning step we consider at most p
tasks, the complexity of the pruning on a resource is ()pnO ⋅ . As we have m re-
sources, the overall complexity of the sweep algorithm is ()pnmnnmO ⋅⋅+⋅⋅ log .

3.2 Additional Pruning Algorithms

A second algorithm based on constructive disjunction [12], [19] and on some of the
propagation rules (lines 5-9 of Algorithm 3 and lines 2-3 of Algorithm 4) of the pre-
vious pruning algorithms was implemented. For a not yet assigned task, it consists
first in making the hypothesis that it is assigned on its possible resources and in per-
forming the mentioned pruning rules. In a second phase we remove those values that
were rejected in all the previous hypotheses. Finally we mention that we have gener-
alized task intervals [11] to the facts that we both have negative heights and more
than one machine.

4 Experimental Results

Benchmark Description As it was already shown in Sect. 2, the scumulative con-

straint can model a large number of situations. Rather than focusing on a specific
problem type, we tried to get some insight of the practical behavior of the sweep
algorithm on a large spectrum of problem patterns. For this purpose we generated 576
different problems patterns by combining the possible ways to generate a problem
instance as shown by Table 2.

For each problem pattern we generated 20 random instances with a fixed density
for the resource consumption and computed the median time for running a limited
discrepancy search of order 1 for 50, 100, 150 and 200 tasks. Benchmarks were run
on a 266 Mhz Pentium II processor under Linux with a version of SICStus Prolog
compiled with gcc version 2.95.2 (-O2). Our experiments were performed by fixing
the tasks according to their initial ordering; within a task, we successively fixed the
resource consumption, the machine, the origin and the duration attributes.

Analysis Parts (A) and (B) of Fig. 4 report on the best, median and worst patterns
when most of the tasks are not fixed as well as when most of the tasks are fixed. A

18 We assume that all operations on domain variables are performed in ()1O .

problem pattern is denoted by a tuple MachineResourceDurationOrigin ,,, where each

position indicates the way to generate the corresponding characteristic. For instance
part (A) tells us that, when all tasks are nearly free, the combination “random earliest
start”, “variable small or large duration”, “positive or negative resource consumption”
and “full set of machines” is the most time-consuming one.

Finally parts (C) to (F) show for each way to generate a task attribute the total me-
dian time over all problem patterns that effectively use this given method divided by
the number of problem patterns. For example, (D) gives the following ordering (in
increasing time) for the different way to generate the duration attribute: “fixed small
duration”, “variable small duration”, “fixed small or large duration”, “variable small
or large duration”.

Table 2. Generation of the characteristics of a problem pattern (assuming ≤ constraint)

Characteristic Ways to Generate the Different Characteristic of a Problem Pattern

Origin 1 (full origin): min=1, max19=horizon.

2 (random earliest start): min=random(1,0.9xhorizon)20 max=horizon.
3 (fixed origin): min=max=random(1,0.9xhorizon).

()durationminimumaverage21 ⋅⋅= hhhorizon

otherwise5machine,oneif501 =h otherwise1height,negativewithtasksexistif5.02 =h

Duration 1 (fixed small duration): min=max=random(0,10).
2 (fixed small or large duration): min=max=random(0,200).
3 (variable small duration): min=random(0,10), max=min+random(0,5)
4 (variable small or large duration): min=random(0,100), max=min+random(0,100)

Resource

consumption

1 (fixed consumption): min=max=random(0,10)
2 (variable consumption): min=random(0,7), max=min+random(0,5)
3 (variable positive or negative consumption): min=random(-10,0), max=min+random(0,10)

Machine 1 (single machine): min=max=1
2 (full set of machines): min=1, max=10
3 (subset of machines): min=random(1,10), max=min+random(0,10)
4 (fixed machine with several machines): min=max=random(1,10)

Task 1 (nearly fixed): at most 5 tasks are not completely fixed
2 (nearly free): nearly all tasks are not fixed

19 min and max stand for the minimum and maximum values of the domain variable for which

we generate the initial domain.
20 random(low,up) stands for a random number r such that low≤r≤up.

40000

35000

30000

25000

20000

15000

10000

5000

0 50 100 150 200 250

ru
nt

im
e

(m
se

c)

0

90

80

70

60

50

40

30

20

0 50 100 150 200 250

ru
nt

im
e

(m
se

c)

10

<2,4,3,2>
<1,1,2,2>
<1,1,1,4>

<1,4,3,2>
<2,3,3,4>
<1,1,1,4>

(A): # tasks (free) (B): # tasks (nearly fixed)

Fig. 4. Performance evaluation of the sweep algorithm (each legend is ordered by decreasing runtime)

5 Conclusion

A first contribution of this paper is to come up with a definition of
the scumulative constraint which for the first time completely unifies the “at most” and

“at least” sides of the constraint. Surprisingly enough different variants of the “at
least” side of the cumulative constraint were introduced in different constraint systems
but, to our best knowledge, nothing was published on this topic, and one may assume
that distinct algorithms were used for the “at least” and the “at most” sides. In contrast
our approach allows coming up with the same algorithm for both sides. Moreover this
algorithm assumes neither the duration nor the resource consumption to be fixed, and
provides pruning for all the different types of attributes of a task. A second major
contribution from the modeling point of view, which was never considered before,
neither in the constraint nor in the operation research community [9], [14], is the
introduction of negative heights for the quantity of resource used by the tasks. This
opens the scumulative constraint to new producer consumer problems [18] or to new

problems where a set of tasks has to cover several given profiles, which may not be
completely fixed initially.

2500

2000

1500

1000

500

0 50 100 150 200 250

av
e

ru
nt

im
e

(m
se

c)

0

(C): # tasks (free), origin attribute

2500

2000

1500

1000

500

0
0

(D): # tasks (free), duration attribute

30002
1
3

50 100 150 200 250

av
e

ru
nt

im
e

(m
se

c)
 4

2
3
1

2500

2000

1500

1000

500

0 50 100 150 200 250

av
e

ru
nt

im
e

(m
se

c)

0

(E): # tasks (free), height attribute

2500

2000

1500

1000

500

0
0

(F): # tasks (free), machine attribute

3000
3
2
1

50 100 150 200 250

av
e

ru
nt

im
e

(m
se

c)
 2

3
1
4

3500

Acknowledgements

Thanks to Per Mildner for useful comments on an earlier draft of this paper.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP to solve Complex Scheduling and Packing
Problems. Mathl. Comput. Modelling, 17(7), pages 57-73, (1993).

2. Artigues, C., Roubellat, F.: A polynomial activity insertion algorithm in a multi-resource
schedule with cumulative constraints and multiple modes. In European Journal of Opera-
tional Research (EJOR), 127, pages 297-316, (2000).

3. Barták, R.: Dynamic Constraint Models for Planning and Scheduling Problems. In New
Trends in Constraints (Papers from the Joint ERCIM/Compulog-Net Workshop, Cyprus,
October 25-27, 1999), LNAI 1865, Springer Verlag, (2000).

4. Baptiste, P., Le Pape, C., Nuijten, W.: Satisfiability Tests and Time-Bound Adjustments for
Cumulative Scheduling Problems. In Annals of Op.Research, 92, pages 305-333, (1999).

5. Beck, J. C., Fox, M. S.: Constraint-directed techniques for scheduling alternative activities.
In Artificial Intelligence 121, pages 211-250, (2000).

6. Beldiceanu, N.: Pruning for the minimum Constraint Family and for the number of distinct
values Constraint Family. In Third International Workshop on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
CP-AI-OR’2001, (2001).

7. Beldiceanu, N.: Sweep as a generic pruning technique. In TRICS: Techniques foR Imple-
menting Constraint programming, CP2000, Singapore (2000).

8. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry –
Algorithms and Applications. Springer, (1997).

9. Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project
scheduling: Notation, classification, models and methods, in EJOR 112, pages 3-41, (1999).

10.Carlsson, M., Ottosson G., Carlson, B.: An Open-Ended Finite Domain Constraint Solver.
Proc. Programming Languages: Implementations, Logics, and Programs, vol. 1292 of Lec-
ture Notes in Computer Science, pages 191-206, Springer-Verlag, (1997).

11.Caseau, Y., Laburthe, F.: Cumulative Scheduling with Task Intervals. In Proceedings of the
Joint International Conference and Symposium on Logic Programming, MIT Press, (1996).

12.De Backer, B., Beringer, A.: A CLP Language Handling Disjunctions of Linear Constraints.
In Proc. 10th International Conference on Logic Programming, pages 550-563, (1993).

13.Erschler, J., Lopez, P.: Energy-based approach for task scheduling under time and resources
constraints. In 2nd International Workshop on Project Management and Scheduling, pages
115-121, Compiègne (France), June 20-22, (1990).

14.Herroelen, W., Demeulemeester, E., De Reyck, B.: A Classification Scheme for Project
Scheduling Problems. in: Weglarz J. (Ed.), Handbook on Recent advances in Project Sched-
uling, Kluwer Academic Publishers, (1998).

15.Lahrichi, A.: Scheduling: the Notions of Hump, Compulsory Parts and their Use in Cumula-
tive Problems. in: C. R. Acad. Sc. Paris, t. 294, pages 209-211, (1982).

16.Poder, E., Beldiceanu, N., Sanlaville, E.: Computing the Compulsory Part of a Task with
Varying Duration and Varying Resource Consumption. Submitted to European Journal of
Operational Research (EJOR), (February 2001).

17.Preparata, F. P., Shamos, M. I.: Computational geometry. An introduction. Springer-Verlag,
(1985).

18.Simonis, H., Cornelissens, T.: Modelling Producer/Consumer Constraints. In CP’95, First
International Conference, CP’95, Cassis, France, September 19-22, 1995, Proceedings. Lec-
ture Notes in Computer Science, Vol. 976, Springer, pages 449-462, (1995).

19.Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, Implementation and Evaluation of
the Constraint Language cc(FD). In A. Podelski, ed., Constraints: Basics and Trends, vol.
910 of Lecture Notes in Computer Science, Springer-Verlag, (1995).

20.Würtz, J.: Oz Scheduler: A Workbench for Scheduling Problems. In Proceedings of the 8th
IEEE International Conference on Tools with Artificial Intelligence, Nov16--19 1996, IEEE
Computer Society Press, (1996).

