969 research outputs found

    CPN Tools 4: Multi-formalism and Extensibility

    Full text link
    Abstract. CPN Tools is an advanced tool for editing, simulating, and analyzing colored Petri nets. This paper discusses the fourth major re-lease of the tool, which makes it simple to use the tool for ordinary Petri nets, including adding inhibitor and reset arcs, and PNML export. This version also supports declarative modeling using constraints, and adds an extension framework making it easy for third parties to extend CPN Tools using Java.

    Ultrastable lasers based on vibration insensitive cavities

    Full text link
    We present two ultra-stable lasers based on two vibration insensitive cavity designs, one with vertical optical axis geometry, the other horizontal. Ultra-stable cavities are constructed with fused silica mirror substrates, shown to decrease the thermal noise limit, in order to improve the frequency stability over previous designs. Vibration sensitivity components measured are equal to or better than 1.5e-11 per m.s^-2 for each spatial direction, which shows significant improvement over previous studies. We have tested the very low dependence on the position of the cavity support points, in order to establish that our designs eliminate the need for fine tuning to achieve extremely low vibration sensitivity. Relative frequency measurements show that at least one of the stabilized lasers has a stability better than 5.6e-16 at 1 second, which is the best result obtained for this length of cavity.Comment: 8 pages 12 figure

    Ultraviolet Absorption Spectra at Reduced Temperatures. I. Principles and Methods

    Get PDF
    Low temperature absorption and fluorescence spectra of solids, liquids, and solutions often reveal increased spectral detail of use in analytical procedures and molecular structure studies. Nevertheless, while qualitative observations of the influence of liquid air temperatures upon optical properties were undertaken very early, investigations of the absorption and fluorescence of organic compounds at the temperature of liquid nitrogen (-195.6°; 77.4 °K.) and below have appeared only sporadically. Because of the potential usefulness of the technique we have undertaken a systematic study of the low temperature spectra of substances of biochemical interest. The present paper discusses the methods employed; subsequent papers will deal with the experimental results. In this work, we have emphasized the wave-length location of absorption bands and the accurate determination of relative optical densities rather than precision in the determination of absolute optical densities, thus permitting the use of simpler methods than would otherwise be necessary

    Experimenting an optical second with strontium lattice clocks

    Full text link
    Progress in realizing the SI second had multiple technological impacts and enabled to further constraint theoretical models in fundamental physics. Caesium microwave fountains, realizing best the second according to its current definition with a relative uncertainty of 2-4x10^(-16), have already been superseded by atomic clocks referenced to an optical transition, both more stable and more accurate. Are we ready for a new definition of the second? Here we present an important step in this direction: our system of five clocks connects with an unprecedented consistency the optical and the microwave worlds. For the first time, two state-of-the-art strontium optical lattice clocks are proven to agree within their accuracy budget, with a total uncertainty of 1.6x10^(-16). Their comparison with three independent caesium fountains shows a degree of reproducibility henceforth solely limited at the level of 3.1x10^(-16) by the best realizations of the microwave-defined second.Comment: 9 pages, 4 figures, 2 table

    The APEX framework: prototyping of ubiquitous environments based on Petri Nets

    Get PDF
    The user experience of ubiquitous environments is a determining factor in their success. The characteristics of such systems must be explored as early as possible to anticipate potential user problems, and to reduce the cost of redesign. However, the development of early prototypes to be evaluated in the target environment can be disruptive to the ongoing system and therefore unacceptable. This paper reports on an ongoing effort to explore how model-based rapid prototyping of ubiquitous environments might be used to avoid actual deployment while still enabling users to interact with a representation of the system. The paper describes APEX, a framework that brings together an existing 3D Application Server with CPN Tools. APEX-based prototypes enable users to navigate a virtual world simulation of the envisaged ubiquitous environment. The APEX architecture and the proposed CPN-based modelling approach are described. An example illustrates their use.Fundação para a Ciência e a Tecnologia (FCT) - bolsa de doutoramento SFRH/BD/41179/200

    INTEGRAL observations of the field of the BL Lacertae object S5~0716+714

    Full text link
    We have performed observations of the blazar S5 0716+714 with INTEGRAL on 2-6 April 2004. In the first months of 2004, the source had increased steadily in optical brightness and had undergone two outbursts. During the latter, occurred in March, it reached the extreme level of R = 12.1 mag, which triggered our INTEGRAL program. The target has been detected with IBIS/ISGRI up to 60 keV, with a flux of ~3 x 10e-11 erg/s/cm2 in the 30-60 keV interval, a factor of ~2 higher than observed by the BeppoSAX PDS in October 2000. In the field of S5 0716+714 we have also detected the Flat Spectrum Radio Quasar S5 0836+710 and the two Seyfert galaxies Mkn 3 and Mkn 6. Their IBIS/ISGRI spectra are rather flat, albeit consistent with those measured by BeppoSAX. In the spectrum of Mkn 3 we find some evidence of a break between ~60 and ~100 keV, reminiscent of the high energy cut-offs observed in other Seyfert galaxies. This is the first report of INTEGRAL spectra of weak Active Galactic Nuclei.Comment: 5 pages, 5 figures, in press in A&

    Detailed Radio to Soft Gamma-ray Studies of the 2005 Outburst of the New X-ray Transient XTE J1818-245

    Full text link
    XTE J1818-245 is an X-ray nova that experienced an outburst in 2005, first seen by the RXTE satellite. The source was observed simultaneously at various wavelengths up to soft gamma-rays with the INTEGRAL satellite, from 2005 February to September. X-ray novae are extreme systems that often harbor a black hole, and are known to emit throughout the electromagnetic spectrum when in outburst. We analyzed radio, (N)IR, optical, X-ray and soft gamma-ray observations and constructed simultaneous broad-band X-ray spectra. Analyzing both the light curves in various energy ranges and the hardness-intensity diagram enabled us to study the long-term behavior of the source. Spectral parameters were typical of the Soft Intermediate States and the High Soft States of a black hole candidate. The source showed relatively small spectral variations in X-rays with considerable flux variation in radio. Spectral studies showed that the accretion disc cooled down from 0.64 to 0.27 keV in 100 days and that the total flux decreased while the relative flux of the hot medium increased. Radio emission was detected several times, and, interestingly, five days after entering the HSS. Modeling the spectral energy distribution from the radio to the soft gamma-rays reveals that the radio flares arise from several ejection events. XTE J1818-245 is likely a black hole candidate transient source that might be closer than the Galactic Bulge. The results from the data analysis trace the physical changes that took place in the system at a maximum bolometric luminosity of (0.4-0.9)e38 erg/s (assuming a distance between 2.8-4.3 kpc) and they are discussed within the context of disc and jet models.Comment: Accepted for publication in Astronomy and Astrophysics. 11 Figures, 3 Table

    Serpens X-1 observed by INTEGRAL

    Full text link
    Here we report results of an INTEGRAL-AO1 observation of the X-ray burst and atoll source Ser X-1 performed in May 2003. The object was observed for a total on-source time of 400 ks but nearly 8 degrees off-axis due to its amalgamation with an observation of SS 433, the pointing target source. Ser X-1 has been clearly detected up to 30 keV with unprecedented positional accuracy for high-energy emission. The 20-30 keV light curve showed substantial variability during the observation. Comparison with previous observations indicates that the source was in its high (`banana') state and displayed a soft spectrum during the INTEGRAL pointing. A (non simultaneous) radio-to-gamma-rays broad-band spectral energy distribution is also presented for the first time and discussed.Comment: 6 pages, 3 figures, 1 table; accepted for publication on Astronomy & Astrophysics, main journal. Final version of the paper including the A&A Language Editor's comment
    corecore