531 research outputs found
Photoelectron Soft X-Ray Fluorescence Coincidence Spectroscopy on Free Molecules
A technique for measuring core-level photoemission from free molecules in coincidence with the soft x-ray fluorescence decay is presented. Zero-kinetic-energy photoelectrons are detected in a time-of-flight electron spectrometer, and photons are collected in a large solid angle by a detector situated close to the interaction region. The coincidence spectrum of N2 shows an adiabatic 1s line, free from electron-electron postcollision interaction effects. The results open up new aspects on core-hole excitation-emission dynamics
Multi-Color Imaging of Magnetic Co/Pt Multilayers
We demonstrate for the first time the realization of a spatial resolved two color, element-specific imaging experiment at the free-electron laser facility FERMI. Coherent imaging using Fourier transform holography was used to achieve direct real space access to the nanometer length scale of magnetic domains of Co/Pt heterostructures via the element-specific magnetic dichroism in the extreme ultraviolet spectral range. As a first step to implement this technique for studies of ultrafast phenomena we present the spatially resolved response of magnetic domains upon femtosecond laser excitation
Lossof a chloroplast encoded function could influence species range in kelp
Kelps are important providers and constituents of marine ecological niches, the
coastal kelp forests. Kelp species have differing distribution ranges, but mainly thrive
in temperate and arctic regions. Although the principal factors determining biogeographic
distribution ranges are known, genomics could provide additional answers to
this question.
We sequenced DNA from two Laminaria species with contrasting distribution
ranges, Laminaria digitata and Laminaria solidungula. Laminaria digitata is found in the
Northern Atlantic with a southern boundary in Brittany (France) or Massachusetts
(USA) and a northern boundary in the Arctic, whereas L. solidungula is endemic to the
Arctic only. From the raw reads of DNA, we reconstructed both chloroplast genomes
and annotated them. A concatenated data set of all available brown algae chloroplast
sequences was used for the calculation of a robust phylogeny, and sequence variations
were analyzed.
The two Laminaria chloroplast genomes are collinear to previously analyzed kelp
chloroplast genomes with important exceptions. Rearrangements at the inverted repeat
regions led to the pseudogenization of ycf37 in L. solidungula, a gene possibly
required under high light conditions. This defunct gene might be one of the reasons
why the habitat range of L. solidungula is restricted to lowlight sublittoral sites in the
Arctic. The inheritance pattern of single nucleotide polymorphisms suggests incomplete
lineage sorting of chloroplast genomes in kelp species.
Our analysis of kelp chloroplast genomes shows that not only evolutionary information
could be gleaned from sequence data. Concomitantly, those sequences can
also tell us something about the ecological conditions which are required for species
well‐being
Integrating reproductive phenology in ecological niche models changed the predicted future ranges of a marine invader
Aim Phenology of a wide diversity of organisms has a dependency on climate, usually with reproductive periods beginning earlier in the year and lasting longer at lower latitudes. Temperature and day length are known environmental drivers of the reproductive timing of many species. Hence, reproductive phenology is sensitive to warming and is important to be considered for reliable predictions of species distributions. This is particularly relevant for rapidly spreading non-indigenous species (NIS). In this study, we forecast the future ranges of a NIS, the seaweed Sargassum muticum, including its reproductive phenology. Location Coastal areas of the Northern Hemisphere (Pacific and Atlantic oceans). Methods We used ecological niche modelling to predict the distribution of S. muticum under two scenarios forecasting limited (RCP 2.6) and severe (RCP 8.5) future climate changes. We then refined our predictions with a hybrid model using sea surface temperature constraints on reproductive phenology. Results Under the most severe climate change scenario, we predicted northward expansions which may have significant ecological consequences for subarctic coastal ecosystems. However, in lower latitudes, habitats currently occupied by S. muticum will no longer be suitable, creating opportunities for substantial community changes. The temperature constraints imposed by the reproductive window were shown to restrict the modelled future species expansion strongly. Under the RCP 8.5 scenario, the total range area was expected to increase by 61.75% by 2100, but only by 1.63% when the reproductive temperature window was considered. Main conclusions Altogether these results exemplify the need to integrate phenology better to improve the prediction of future distributional shifts at local and regional scales.Agência financiadora Número do subsídio
Fundacao para a Ciencia e a Tecnologia
CCMAR/Multi/04326/2019
FCT-BIODIVERSA/004/2015
FCT-SEAS-ERA/0001/2012
SFRH/BPD/107878/2015
SFRH/BPD/85040/2012
Erasmus Mundus Doctoral Programme MARES on Marine Ecosystem Health Conservation
MARES_13_08
Pew Marineinfo:eu-repo/semantics/publishedVersio
Irreversible transformation of ferromagnetic ordered stripe domains in single-shot IR pump - resonant X-ray scattering probe experiments
The evolution of a magnetic domain structure upon excitation by an intense,
femtosecond Infra-Red (IR) laser pulse has been investigated using single-shot
based time-resolved resonant X-ray scattering at the X-ray Free Electron laser
LCLS. A well-ordered stripe domain pattern as present in a thin CoPd alloy film
has been used as prototype magnetic domain structure for this study. The
fluence of the IR laser pump pulse was sufficient to lead to an almost complete
quenching of the magnetization within the ultrafast demagnetization process
taking place within the first few hundreds of femtoseconds following the IR
laser pump pulse excitation. On longer time scales this excitation gave rise to
subsequent irreversible transformations of the magnetic domain structure. Under
our specific experimental conditions, it took about 2 nanoseconds before the
magnetization started to recover. After about 5 nanoseconds the previously
ordered stripe domain structure had evolved into a disordered labyrinth domain
structure. Surprisingly, we observe after about 7 nanoseconds the occurrence of
a partially ordered stripe domain structure reoriented into a novel direction.
It is this domain structure in which the sample's magnetization stabilizes as
revealed by scattering patterns recorded long after the initial pump-probe
cycle. Using micro-magnetic simulations we can explain this observation based
on changes of the magnetic anisotropy going along with heat dissipation in the
film.Comment: 16 pages, 6 figure
Heat stress responses and population genetics of the kelp Laminaria digitata (Phaeophyceae) across latitudes reveal differentiation among North Atlantic populations
To understand the thermal plasticity of a coastal foundation species across its latitudinal distribution, we assess physiological responses to high temperature stress in the kelp Laminaria digitata in combination with population genetic characteristics and relate heat resilience to genetic features and phylogeography. We hypothesize that populations from Arctic and cold-temperate locations are less heat resilient than populations from warm distributional edges. Using meristems of natural L. digitata populations from six locations ranging between Kongsfjorden, Spitsbergen (79°N), and Quiberon, France (47°N), we performed a common-garden heat stress experiment applying 15°C to 23°C over eight days. We assessed growth, photosynthetic quantum yield, carbon and nitrogen storage, and xanthophyll pigment contents as response traits. Population connectivity and genetic diversity were analyzed with microsatellite markers. Results from the heat stress experiment suggest that the upper temperature limit of L. digitata is nearly identical across its distribution range, but subtle differences in growth and stress responses were revealed for three populations from the species' ecological range margins. Two populations at the species' warm distribution limit showed higher temperature tolerance compared to other populations in growth at 19°C and recovery from 21°C (Quiberon, France), and photosynthetic quantum yield and xanthophyll pigment responses at 23°C (Helgoland, Germany). In L. digitata from the northernmost population (Spitsbergen, Norway), quantum yield indicated the highest heat sensitivity. Microsatellite genotyping revealed all sampled populations to be genetically distinct, with a strong hierarchical structure between southern and northern clades. Genetic diversity was lowest in the isolated population of the North Sea island of Helgoland and highest in Roscoff in the English Channel. All together, these results support the hypothesis of moderate local differentiation across L. digitata's European distribution, whereas effects are likely too weak to ameliorate the species' capacity to withstand ocean warming and marine heatwaves at the southern range edge.Foundation for Science and Technology: UIDB/04326/2020/ PTDC/MAR-EST/6053/2014/ Biodiversa/0004/2015info:eu-repo/semantics/publishedVersio
Deep-water macroalgae from the Canary Islands: new records and biogeographical relationships
Due to the geographical location and paleobiogeography of the Canary Islands, the
seaweed flora contains macroalgae with different distributional patterns. In this contribution, the biogeographical relations of several new records of deep-water macroalgae recently collected around the Canarian archipelago are discussed. These are Bryopsidella neglecta (Berthotd) Rietema,Discosporangium mesarthrocarpum (Meneghini) Hauck, Hincksia onslowensis (Amsler et Kapraun)P.C. Silva, Syringoderma floridana Henry, Peyssonnelia harveyana J. Agardh, Cryptonemia seminervis(C. Agardh) J. Agardh, Botryodadia wynnei Ballantine, Gloiocladia blomquistii (Searles) R. E.Norris, PIahchrysis peltata (W. R. Taylor) P. Huv4 et H. Huv4, Leptofauchea brasiliensis Joly, and Sarcodiotheca divaricata W. R. Taylor. These new records, especially those in the Florideophyceae,support the strong affinity of the Canary Islands seaweed flora with the warm-temperate Mediterranean-Atlantic region. Some species are recorded for the first time from the east coast of the Atlantic Ocean, enhancing the biogeographic relations of the Canarian marine flora with that of the western Atlantic regions
Recommended from our members
Transient magnetic gratings on the nanometer scale
Laser-driven non-local electron dynamics in ultrathin magnetic samples on a sub-10 nm length scale is a key process in ultrafast magnetism. However, the experimental access has been challenging due to the nanoscopic and femtosecond nature of such transport processes. Here, we present a scattering-based experiment relying on a laser-induced electro- and magneto-optical grating in a Co/Pd ferromagnetic multilayer as a new technique to investigate non-local magnetization dynamics on nanometer length and femtosecond timescales. We induce a spatially modulated excitation pattern using tailored Al near-field masks with varying periodicities on a nanometer length scale and measure the first four diffraction orders in an x-ray scattering experiment with magnetic circular dichroism contrast at the free-electron laser facility FERMI, Trieste. The design of the periodic excitation mask leads to a strongly enhanced and characteristic transient scattering response allowing for sub-wavelength in-plane sensitivity for magnetic structures. In conjunction with scattering simulations, the experiment allows us to infer that a potential ultrafast lateral expansion of the initially excited regions of the magnetic film mediated by hot-electron transport and spin transport remains confined to below three nanometers
Recommended from our members
Ultrafast Demagnetization Dominates Fluence Dependence of Magnetic Scattering at Co M Edges
We systematically study the fluence dependence of the resonant scattering cross-section from magnetic domains in Co/Pd-based multilayers. Samples are probed with single extreme ultraviolet (XUV) pulses of femtosecond duration tuned to the Co M3,2 absorption resonances using the FERMI@Elettra free-electron laser. We report quantitative data over 3 orders of magnitude in fluence, covering 16 mJ/cm2/pulse to 10 000 mJ/cm2/pulse with pulse lengths of 70 fs and 120 fs. A progressive quenching of the diffraction cross-section with fluence is observed. Compression of the same pulse energy into a shorter pulse—implying an increased XUV peak electric field—results in a reduced quenching of the resonant diffraction at the Co M3,2 edge. We conclude that the quenching effect observed for resonant scattering involving the short-lived Co 3p core vacancies is noncoherent in nature. This finding is in contrast to previous reports investigating resonant scattering involving the longer-lived Co 2p states, where stimulated emission has been found to be important. A phenomenological model based on XUV-induced ultrafast demagnetization is able to reproduce our entire set of experimental data and is found to be consistent with independent magneto-optical measurements of the demagnetization dynamics on the same samples
A new method to quantify and compare the multiple components of fitness-A study case with kelp niche partition by divergent microstage adaptations to Temperature
Point 1 Management of crops, commercialized or protected species, plagues or life-cycle evolution are subjects requiring comparisons among different demographic strategies. The simpler methods fail in relating changes in vital rates with changes in population viability whereas more complex methods lack accuracy by neglecting interactions among vital rates. Point 2 The difference between the fitness (evaluated by the population growth rate.) of two alternative demographies is decomposed into the contributions of the differences between the pair-wised vital rates and their interactions. This is achieved through a full Taylor expansion (i.e. remainder = 0) of the demographic model. The significance of each term is determined by permutation tests under the null hypothesis that all demographies come from the same pool. Point 3 An example is given with periodic demographic matrices of the microscopic haploid phase of two kelp cryptic species observed to partition their niche occupation along the Chilean coast. The method provided clear and synthetic results showing conditional differentiation of reproduction is an important driver for their differences in fitness along the latitudinal temperature gradient. But it also demonstrated that interactions among vital rates cannot be neglected as they compose a significant part of the differences between demographies. Point 4 This method allows researchers to access the effects of multiple effective changes in a life-cycle from only two experiments. Evolutionists can determine with confidence the effective causes for changes in fitness whereas population managers can determine best strategies from simpler experimental designs.CONICYT-FRENCH EMBASSADY Ph.D. gran
- …