13,762 research outputs found
Interdisciplinary Monte Carlo Simulations
Biological, linguistic, sociological and economical applications of
statistical physics are reviewed here. They have been made on a variety of
computers over a dozen years, not only at the NIC computers. A longer
description can be found in our new book, an emphasis on teaching in
Eur.J.Phys. 26, S 79 and AIP Conf. Proc. 779, 49, 56, 69 and 75.Comment: 11 pages including many Figs.; for 3rd NIC Symposium, Julich, 3/0
Molecular dynamics simulations of glassy polymers
We review recent results from computer simulation studies of polymer glasses,
from chain dynamics around the glass transition temperature Tg to the
mechanical behaviour below Tg. These results clearly show that modern computer
simulations are able to address and give clear answers to some important issues
in the field, in spite of the obvious limitations in terms of length and time
scales. In the present review we discuss the cooling rate effects, and dynamic
slowing down of different relaxation processes when approaching Tg for both
model and chemistry-specific polymer glasses. The impact of geometric
confinement on the glass transition is discussed in detail. We also show that
computer simulations are very useful tools to study structure and mechanical
response of glassy polymers. The influence of large deformations on mechanical
behaviour of polymer glasses in general, and strain hardening effect in
particular are reviewed. Finally, we suggest some directions for future
research, which we believe will be soon within the capabilities of state of the
art computer simulations, and correspond to problems of fundamental interest.Comment: To apear in "Soft Matter
The intuitionistic temporal logic of dynamical systems
A dynamical system is a pair , where is a topological space and
is continuous. Kremer observed that the language of
propositional linear temporal logic can be interpreted over the class of
dynamical systems, giving rise to a natural intuitionistic temporal logic. We
introduce a variant of Kremer's logic, which we denote , and show
that it is decidable. We also show that minimality and Poincar\'e recurrence
are both expressible in the language of , thus providing a
decidable logic expressive enough to reason about non-trivial asymptotic
behavior in dynamical systems
Optimization of a human-powered aircraft using fluid–structure interaction simulations
The special type of aircrafts in which the human power of the pilot is sufficient to take off and sustain flight are known as Human-Powered Aircrafts (HPAs). To explore the peculiarities of these aircrafts, the aerodynamic performance of an existing design is evaluated first, using both the vortex lattice method and computational fluid dynamics. In a second step, it is attempted to design and optimize a new HPA capable of winning the Kremer International Marathon Competition. The design will be special in that it allows one to include a second pilot on board the aircraft. As the structural deflection of the wing is found to be a key aspect during design, fluid-structure interaction simulations are performed and included in the optimization procedure. To assess the feasibility of winning the competition, the physical performance of candidate pilots is measured and compared with the predicted required power
Confinement effects on glass forming liquids probed by DMA
Many molecular glass forming liquids show a shift of the glass transition T-g
to lower temperatures when the liquid is confined into mesoporous host
matrices. Two contrary explanations for this effect are given in literature:
First, confinement induced acceleration of the dynamics of the molecules leads
to an effective downshift of T-g increasing with decreasing pore size. Second,
due to thermal mismatch between the liquid and the surrounding host matrix,
negative pressure develops inside the pores with decreasing temperature, which
also shifts T-g to lower temperatures. Here we present dynamic mechanical
analysis measurements of the glass forming liquid salol in Vycor and Gelsil
with pore sizes of d=2.6, 5.0 and 7.5 nm. The dynamic complex elastic
susceptibility data can be consistently described with the assumption of two
relaxation processes inside the pores: A surface induced slowed down relaxation
due to interaction with rough pore interfaces and a second relaxation within
the core of the pores. This core relaxation time is reduced with decreasing
pore size d, leading to a downshift of T-g proportional to 1/d in perfect
agreement with recent differential scanning calorimetry (DSC) measurements.
Thermal expansion measurements of empty and salol filled mesoporous samples
revealed that the contribution of negative pressure to the downshift of T-g is
small (<30%) and the main effect is due to the suppression of dynamically
correlated regions of size xi when the pore size xi approaches
- …