374 research outputs found
When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds
Circadian clocks are centrally involved in the regulation of daily behavioural and physiological processes. These clocks are synchronized to the 24-hour day by external cues (Zeitgeber), the most important of which is the light-dark cycle. In polar environments, however, the strength of the Zeitgeber is greatly reduced around the summer and winter solstices (continuous daylight or continuous darkness). How animals time their behaviour under such conditions has rarely been studied in the wild. Using a radio-telemetry-based system, we investigated daily activity rhythms under continuous daylight in Barrow, Alaska, throughout the breeding season in four bird species that differ in mating system and parental behaviour. We find substantial diversity in daily activity rhythms depending on species, sex and breeding stage. Individuals exhibited either robust, entrained 24-hour activity cycles, were continuously active (arrhythmic), or showed “free-running” activity cycles. In semipalmated sandpipers, a shorebird with biparental incubation, we show that the free-running rhythm is synchronized between pair mates. The diversity of diel time-keeping under continuous daylight emphasizes the plasticity of the circadian system and the importance of the social and life-history context. Our results support the idea that circadian behaviour can be adaptively modified to enable species-specific time-keeping under polar conditions
Determinants of distribution and prevalence of avian malaria in blue tit populations across Europe : separating host and parasite effects
Although avian malarial parasites are globally distributed, the factors that affect the geographical distribution and local prevalence of different parasite lineages across host populations or species are still poorly understood. Based on the intense screening of avian malarial parasites in nine European blue tit populations, we studied whether distribution ranges as well as local adaptation, host specialization and phylogenetic relationships can determine the observed prevalences within populations. We found that prevalence differed consistently between parasite lineages and host populations, indicating that the transmission success of parasites is lineage specific but is partly shaped by locality-specific effects. We also found that the lineage-specific estimate of prevalence was related to the distribution range of parasites: lineages found in more host populations were generally more prevalent within these populations. Additionally, parasites with high prevalence that were also widely distributed among blue tit populations were also found to infect more host species. These findings suggest that parasites reaching high local prevalence can also realize wide distribution at a global scale that can have further consequences for host specialization. Although phylogenetic relationships among parasites did not predict prevalence, we detected a close match between a tree based on the geographic distance of the host populations and the parasite phylogenetic tree, implying that neighbouring host populations shared a related parasite fauna
Machine learning reveals cryptic dialects that explain mate choice in a songbird
Culturally transmitted communication signals – such as human language or bird song – can change over time through cultural drift, and the resulting dialects may consequently enhance the separation of populations. However, the emergence of song dialects has been considered unlikely when songs are highly individual-specific, as in the zebra finch (Taeniopygia guttata). Here we show that machine learning can nevertheless distinguish the songs from multiple captive zebra finch populations with remarkable precision, and that ‘cryptic song dialects’ predict strong assortative mating in this species. We examine mating patterns across three consecutive generations using captive populations that have evolved in isolation for about 100 generations. We cross-fostered eggs within and between these populations and used an automated barcode tracking system to quantify social interactions. We find that females preferentially pair with males whose song resembles that of the females’ adolescent peers. Our study shows evidence that in zebra finches, a model species for song learning, individuals are sensitive to differences in song that have hitherto remained unnoticed by researchers
Declining extra-pair paternity with laying order associated with initial incubation behavior, but independent of final clutch size in the blue tit
Although functional explanations for female engagement in extra-pair copulation have been studied extensively in birds, little is known about how extra-pair paternity is linked to other fundamental aspects of avian reproduction. However, recent studies indicate that the occurrence of extra-pair offspring may generally decline with laying order, possibly because stimulation by eggs induces incubation, which may suppress female motivation to acquire extra-pair paternity. Here we tested whether experimental inhibition of incubation during the laying phase, induced by the temporary removal of eggs, resulted in increased extra-pair paternity, in concert with a later cessation of laying, in blue tits (Cyanistes caeruleus). As expected, experimental females showed a more gradual increase in nocturnal incubation duration over the laying phase and produced larger clutches than controls. Moreover, incubation duration on the night after the first egg was laid predicted how extra-pair paternity declined with laying order, with less incubation being associated with more extra-pair offspring among the earliest eggs in the clutch. However, incubation duration on this first night was unrelated to our experimental treatment and independent of final clutch size. Consequently, the observed decline in extra-pair paternity with laying order was unaffected by our manipulation and larger clutches included proportionally fewer extra-pair offspring. We suggest that female physiological state prior to laying, associated with incubation at the onset of laying, determines motivation to acquire extra-pair paternity independent of final clutch size. This decline in proportion of extra-pair offspring with clutch size may be a general pattern within bird species
Long-term effects of chronic light pollution on seasonal functions of European blackbirds (turdus merula)
Light pollution is known to affect important biological functions of wild animals, including daily and annual cycles. However, knowledge about long-term effects of chronic exposure to artificial light at night is still very limited. Here we present data on reproductive physiology, molt and locomotor activity during two-year cycles of European blackbirds (Turdus merula) exposed to either dark nights or 0.3 lux at night. As expected, control birds kept under dark nights exhibited two regular testicular and testosterone cycles during the two-year experiment. Control urban birds developed testes faster than their control rural conspecifics. Conversely, while in the first year blackbirds exposed to light at night showed a normal but earlier gonadal cycle compared to control birds, during the second year the reproductive system did not develop at all: both testicular size and testosterone concentration were at baseline levels in all birds. In addition, molt sequence in light-treated birds was more irregular than in control birds in both years. Analysis of locomotor activity showed that birds were still synchronized to the underlying light-dark cycle. We suggest that the lack of reproductive activity and irregular molt progression were possibly the results of i) birds being stuck in a photorefractory state and/or ii) chronic stress. Our data show that chronic low intensities of light at night can dramatically affect the reproductive system. Future studies are needed in order to investigate if and how urban animals avoid such negative impact and to elucidate the physiological mechanisms behind these profound long-term effects of artificial light at night. Finally we call for collaboration between scientists and policy makers to limit the impact of light pollution on animals and ecosystems
MGIS: managing banana (Musa spp.) genetic resources information and high-throughput genotyping data
Unraveling the genetic diversity held in genebanks on a large scale is underway, due to advances in Next-generation sequence (NGS) based technologies that produce high-density genetic markers for a large number of samples at low cost. Genebank users should be in a position to identify and select germplasm from the global genepool based on a combination of passport, genotypic and phenotypic data. To facilitate this, a new generation of information systems is being designed to efficiently handle data and link it with other external resources such as genome or breeding databases. The Musa Germplasm Information System (MGIS), the database for global ex situ-held banana genetic resources, has been developed to address those needs in a user-friendly way. In developing MGIS, we selected a generic database schema (Chado), the robust content management system Drupal for the user interface, and Tripal, a set of Drupal modules which links the Chado schema to Drupal. MGIS allows germplasm collection examination, accession browsing, advanced search functions, and germplasm orders. Additionally, we developed unique graphical interfaces to compare accessions and to explore them based on their taxonomic information. Accession-based data has been enriched with publications, genotyping studies and associated genotyping datasets reporting on germplasm use. Finally, an interoperability layer has been implemented to facilitate the link with complementary databases like the Banana Genome Hub and the MusaBase breeding database.
Database URL:https://www.crop-diversity.org/mgis
Activity Patterns during Food Provisioning Are Affected by Artificial Light in Free Living Great Tits (Parus major)
Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick provisioning period. Pairs that were provided with a small light outside their nest box did not alter the onset, cessation or duration of their working day. There was however a clear effect of artificial light on the feeding rate in the second half of the nestling period: when provided with artificial light females increased their feeding rate when the nestlings were between 9 and 16 days old. Artificial light is hypothesised to have affected the perceived photoperiod of either the parents or the offspring which in turn led to increased parental care. This may have negative fitness consequences for the parents, and light pollution may thus create an ecological trap for breeding birds
Range-wide genetic structure in the thorn-tailed rayadito suggests limited gene flow towards peripheral populations
Indexación ScopusUnderstanding the population genetic consequences of habitat heterogeneity requires assessing whether patterns of gene flow correspond to landscape configuration. Studies of the genetic structure of populations are still scarce for Neotropical forest birds. We assessed range-wide genetic structure and contemporary gene flow in the thorn-tailed rayadito (Aphrastura spinicauda), a passerine bird inhabiting the temperate forests of South America. We used 12 microsatellite loci to genotype 582 individuals from eight localities across a large latitudinal range (30°S–56°S). Using population structure metrics, multivariate analyses, clustering algorithms, and Bayesian methods, we found evidence for moderately low regional genetic structure and reduced gene flow towards the range margins. Genetic differentiation increased with geographic distance, particularly in the southern part of the species’ distribution where forests are continuously distributed. Populations in the north seem to experience limited gene flow likely due to forest discontinuity, and may comprise a demographically independent unit. The southernmost population, on the other hand, is genetically depauperate and different from all other populations. Different analytical approaches support the presence of three to five genetic clusters. We hypothesize that the genetic structure of the species follows a hierarchical clustered pattern. © 2020, The Author(s).https://www-nature-com.recursosbiblioteca.unab.cl/articles/s41598-020-66450-
Postcopulatory sexual selection
The female reproductive tract is where competition between the sperm of different males takes place, aided and abetted by the female herself. Intense postcopulatory sexual selection fosters inter-sexual conflict and drives rapid evolutionary change to generate a startling diversity of morphological, behavioural and physiological adaptations. We identify three main issues that should be resolved to advance our understanding of postcopulatory sexual selection. We need to determine the genetic basis of different male fertility traits and female traits that mediate sperm selection; identify the genes or genomic regions that control these traits; and establish the coevolutionary trajectory of sexes
Immune-Mediated Change in the Expression of a Sexual Trait Predicts Offspring Survival in the Wild
BACKGROUND: The "good genes" theory of sexual selection postulates that females choose mates that will improve their offspring's fitness through the inheritance of paternal genes. In spite of the attention that this hypothesis has given rise to, the empirical evidence remains sparse, mostly because of the difficulties of controlling for the many environmental factors that may covary with both the paternal phenotype and offspring fitness. Here, we tested the hypothesis that offspring sired by males of a preferred phenotype should have better survival in an endangered bird, the houbara bustard (Chlamydotis undulata undulata). METHODOLOGY/PRINCIPAL FINDINGS: We tested if natural and experimentally-induced variation in courtship display (following an inflammatory challenge) predicts the survival of offspring. Chicks were produced by artificial insemination of females, ensuring that any effect on survival could only arise from the transfer of paternal genes. One hundred and twenty offspring were equipped with radio transmitters, and their survival monitored in the wild for a year. This allowed assessment of the potential benefits of paternal genes in a natural setting, where birds experience the whole range of environmental hazards. Although natural variation in sire courtship display did not predict offspring survival, sires that withstood the inflammatory insult and maintained their courtship activity sired offspring with the best survival upon release. CONCLUSIONS: This finding is relevant both to enlighten the debate on "good genes" sexual selection and the management of supportive breeding programs
- …