182 research outputs found

    Tale of two curricula: The performance of 2000 students in introductory electromagnetism

    Get PDF
    The performance of over 2000 students in introductory calculus-based electromagnetism (E&M) courses at four large research universities was measured using the Brief Electricity and Magnetism Assessment (BEMA). Two different curricula were used at these universities: a traditional E&M curriculum and the Matter & Interactions (M&I) curriculum. At each university, postinstruction BEMA test averages were significantly higher for the M&I curriculum than for the traditional curriculum. The differences in post-test averages cannot be explained by differences in variables such as preinstruction BEMA scores, grade point average, or SAT Reasoning Test (SAT) scores. BEMA performance on categories of items organized by subtopic was also compared at one of the universities; M&I averages were significantly higher in each topic. The results suggest that the M&I curriculum is more effective than the traditional curriculum at teaching E&M concepts to students, possibly because the learning progression in M&I reorganizes and augments the traditional sequence of topics, for example, by increasing early emphasis on the vector field concept and by emphasizing the effects of fields on matter at the microscopic level

    Construction of a \u3cem\u3eSonchus Yellow Net Virus\u3c/em\u3e Minireplicon: A Step Toward Reverse Genetic Analysis of Plant Negative-Strand RNA Viruses

    Get PDF
    Reverse genetic analyses of negative-strand RNA (NSR) viruses have provided enormous advances in our understanding of animal viruses over the past 20 years, but technical difficulties have hampered application to plant NSR viruses. To develop a reverse genetic approach for analysis of plant NSR viruses, we have engineered Sonchus yellow net nucleorhabdovirus (SYNV) minireplicon (MR) reporter cassettes for Agrobacterium tumefaciens expression in Nicotiana benthamiana leaves. Fluorescent reporter genes substituted for the SYNV N and P protein open reading frames (ORFs) exhibited intense single-cell foci throughout regions of infiltrated leaves expressing the SYNV MR derivatives and the SYNV nucleocapsid (N), phosphoprotein (P), and polymerase (L) proteins. Genomic RNA and mRNA transcription was detected for reporter genes substituted for both the SYNV N and P ORFs. These activities required expression of the N, P, and L core proteins in trans and were enhanced by codelivery of viral suppressor proteins that interfere with host RNA silencing. As is the case with other members of the Mononegavirales, we detected polar expression of fluorescent proteins and chloramphenicol acetyltransferase substitutions for the N and P protein ORFs. We also demonstrated the utility of the SYNV MR system for functional analysis of SYNV core proteins in trans and the cis-acting leader and trailer sequence requirements for transcription and replication. This work provides a platform for construction of more complex SYNV reverse genetic derivatives and presents a general strategy for reverse genetic applications with other plant NSR viruses

    A survey for redshifted molecular and atomic absorption lines I

    Get PDF
    We are currently undertaking a large survey for redshifted atomic and molecular absorption ... only one clear and one tentative detection were obtained: HI absorption at z = 0.097 in PKS 1555-140 and OH absorption at z =0.126 in PKS 2300-189, respectively... In order to determine why no clear molecular absorption was detected in any of the 13 sources searched, we investigate the properties of the five redshifted systems currently known to exhibit OH absorption. In four of these, molecules were first detected via millimetre-wave transitions and the flat radio spectra indicate compact background continuum sources, which may suggest a high degree of coverage of the background source by the molecular clouds in the absorber. Furthermore, for these systems we find a relationship between the molecular line strength and red optical--near infrared (V-K) colours, thus supporting the notion that the reddening of these sources is due to dust, which provides an environment conducive to the formation of molecules. Upon comparison with the V-K colours of our sample, this relationship suggests that, presuming the reddening occurs at the host galaxy redshift at least in some of the targets, many of our observations still fall short of the sensitivityrequired to detect OH absorption, although a confirmation of the ``detection'' of OH in 2300-189 could contravene this.Comment: 13 pages, loads of figures, accepted by MNRA

    Comparing large lecture mechanics curricula using the Force Concept Inventory: A five thousand student study

    Full text link
    The performance of over 5000 students in introductory calculus-based mechanics courses at the Georgia Institute of Technology was assessed using the Force Concept Inventory (FCI). Results from two different curricula were compared: a traditional mechanics curriculum and the Matter & Interactions (M&I) curriculum. Post-instruction FCI averages were significantly higher for the traditional curriculum than for the M&I curriculum; the differences between curricula persist after accounting for factors such as pre-instruction FCI scores, grade point averages, and SAT scores. FCI performance on categories of items organized by concepts was also compared; traditional averages were significantly higher in each concept. We examined differences in student preparation between the curricula and found that the relative fraction of homework and lecture topics devoted to FCI force and motion concepts correlated with the observed performance differences. Limitations of concept inventories as instruments for evaluating curricular reforms are discussed.Comment: 21 pages, 4 figures, submitted to Am. J. Phys. arXiv admin note: substantial text overlap with arXiv:1112.559

    Nonergodicity transitions in colloidal suspensions with attractive interactions

    Full text link
    The colloidal gel and glass transitions are investigated using the idealized mode coupling theory (MCT) for model systems characterized by short-range attractive interactions. Results are presented for the adhesive hard sphere and hard core attractive Yukawa systems. According to MCT, the former system shows a critical glass transition concentration that increases significantly with introduction of a weak attraction. For the latter attractive Yukawa system, MCT predicts low temperature nonergodic states that extend to the critical and subcritical region. Several features of the MCT nonergodicity transition in this system agree qualitatively with experimental observations on the colloidal gel transition, suggesting that the gel transition is caused by a low temperature extension of the glass transition. The range of the attraction is shown to govern the way the glass transition line traverses the phase diagram relative to the critical point, analogous to findings for the fluid-solid freezing transition.Comment: 11 pages, 7 figures; to be published in Phys. Rev. E (1 May 1999

    Mapping photodissociation and shocks in the vicinity of Sgr A*

    Full text link
    We have obtained maps of the molecular emission within the central five arcminutes (12 pc) of the Galactic center (GC) in selected molecular tracers: SiO(2-1), HNCO(5_{0,5}-4_{0,4}), and the J=1-->0 transition of H^{13}CO+, HN^{13}C, and C^{18}O at an angular resolution of 30" (1.2 pc). The mapped region includes the circumnuclear disk (CND) and the two surrounding giant molecular clouds (GMCs) of the Sgr A complex, known as the 20 and 50 km s^{-1} molecular clouds.Additionally, we simultaneously observed the J=2-1 and 3-2 transitions of SiO toward selected positions to estimate the physical conditions of the molecular gas. The SiO(2-1) and H^{13}CO+(1-0) emission covers the same velocity range and presents a similar distribution. In contrast, HNCO(5-4) emission appears in a narrow velocity range mostly concentrated in the 20 and 50 km s^{-1} GMCs. The HNCO column densities and fractional abundances present the highest contrast, with difference factors of ≥\geq60 and 28, respectively. Their highest values are found toward the cores of the GMCs, whereas the lowest ones are measured at the CND. SiO abundances do not follow this trend, with high values found toward the CND, as well as the GMCs. By comparing our abundances with those of prototypical Galactic sources we conclude that HNCO, similar to SiO, is ejected from grain mantles into gas-phase by nondissociative C-shocks. This results in the high abundances measured toward the CND and the GMCs. However, the strong UV radiation from the Central cluster utterly photodissociates HNCO as we get closer to the center, whereas SiO seems to be more resistant against UV-photons or it is produced more efficiently by the strong shocks in the CND. Finally, we discuss the possible connections between the molecular gas at the CND and the GMCs using the HNCO/SiO, SiO/CS, and HNCO/CS intensity ratios as probes of distance to the Central cluster.Comment: 26 pages plus 2 appendixes with additional figures. 17 figures in total. Accepted for publication in A&

    Tagging the world : descrying consciousness in cognitive processes

    Get PDF
    Although having conscious experiences is a fundamental feature of our everyday life, our understanding of what consciousness is is very limited. According to one of the main conclusions of contemporary philosophy of mind, the qualitative aspect of consciousness seems to resist functionalisation, i.e. it cannot be adequately defined solely in terms of functional or causal roles, which leads to an epistemic gap between phenomenal and scientific knowledge. Phenomenal qualities, then, seem to be, in principle, unexplainable in scientific terms. As a reaction to this pessimistic conclusion it is a major trend in contemporary science of consciousness to turn away from subjective experiences and re-define the subject of investigations in neurological and behavioural terms. This move, however, creates a gap between scientific theories of consciousness, and the original phenomenon, which we are so intimately connected with. The thesis focuses on this gap. It is argued that it is possible to explain features of consciousness in scientific terms. The thesis argues for this claim from two directions. On the one hand, a specific identity theory is formulated connecting phenomenal qualities to certain intermediate level perceptual representations which are unstructured for central processes of the embedding cognitive system. This identity theory is hypothesised on the basis of certain similarities recognised between the phenomenal and the cognitive-representational domains, and then utilised in order to uncover further similarities between these two domains. The identity theory and the further similarities uncovered are then deployed in formulating explanations of the philosophically most important characteristics of the phenomenal domain—i.e. why phenomenal qualities resist functionalisation, and why the epistemic gap occurs. On the other hand, the thesis investigates and criticises existing models of reductive explanation. On the basis of a detailed analysis of how successful scientific explanations proceed a novel account of reductive explanation is proposed, which utilises so-called prior identities. Prior identities are prerequisites rather than outcomes of reductive explanations. They themselves are unexplained but are nevertheless necessary for mapping the features to be explained onto the features the explanation relies on. Prior identities are hypothesised in order to foster the formulation of explanatory claims accounting for target level phenomena in terms of base level processes—and they are justified if they help projecting base level explanations to new territories of the target level. The thesis concludes that the identity theory proposed is a prior identity, and the explanations of features of the phenomenal domain formulated with the aid of this identity are reductive explanations proper. In this sense, the thesis introduces the problem of phenomenal consciousness into scientific discourse, and therefore offers a bridge between the philosophy and the science of consciousness: it offers an approach to conscious experience which, on the one hand, tries to account for the philosophically most important features of consciousness, whereas, on the other hand, does it in a way which smoothly fits into the everyday practice of scientific research

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201

    Control of Cerebellar Long-Term Potentiation by P-Rex-Family Guanine-Nucleotide Exchange Factors and Phosphoinositide 3-Kinase

    Get PDF
    Long-term potentiation (LTP) at the parallel fibre-Purkinje cell synapse in the cerebellum is a recently described and poorly characterized form of synaptic plasticity. The induction mechanism for LTP at this synapse is considered reciprocal to "classical" LTP at hippocampal CA1 pyramidal neurons: kinases promote increased trafficking of AMPA receptors into the postsynaptic density in the hippocampus, whereas phosphatases decrease internalization of AMPA receptors in the cerebellum. In the hippocampus, LTP occurs in overlapping phases, with the transition from early to late phases requiring the consolidation of initial induction processes by structural re-arrangements at the synapse. Many signalling pathways have been implicated in this process, including PI3 kinases and Rho GTPases.We hypothesized that analogous phases are present in cerebellar LTP, and took as the starting point for investigation our recent discovery that P-Rex--a Rac guanine nucleotide exchange factor which is activated by PtdIns(3,4,5)P(3)--is highly expressed in mouse cerebellar Purkinje neurons and plays a role in motor coordination. We found that LTP evoked at parallel fibre synapses by 1 Hz stimulation or by NO donors was not sustained beyond 30 min when P-Rex was eliminated or Rac inhibited, suggesting that cerebellar LTP exhibits a late phase analogous to hippocampal LTP. In contrast, inhibition of PI3 kinase activity eliminated LTP at the induction stage.Our data suggest that a PI3K/P-Rex/Rac pathway is required for late phase LTP in the mouse cerebellum, and that other PI3K targets, which remain to be discovered, control LTP induction
    • …
    corecore