6,061 research outputs found

    Non-Hermitian robust edge states in one-dimension: Anomalous localization and eigenspace condensation at exceptional points

    Full text link
    Capital to topological insulators, the bulk-boundary correspondence ties a topological invariant computed from the bulk (extended) states with those at the boundary, which are hence robust to disorder. Here we put forward an ordering unique to non-Hermitian lattices, whereby a pristine system becomes devoid of extended states, a property which turns out to be robust to disorder. This is enabled by a peculiar type of non-Hermitian degeneracy where a macroscopic fraction of the states coalesce at a single point with geometrical multiplicity of 11, that we call a phenomenal point.Comment: 6 pages, 4 figure

    Predictors of red fox (Vulpes vulpes) helminth parasite diversity in the provinces of Spain

    Get PDF
    We analysed the viscera of 321 red foxes collected over the last 30 years in 34 of the 47 provinces of peninsular Spain, and identified their helminth parasites. We measured parasite diversity in each sampled province using four diversity indices: Species richness, Marg a l e f’s species richness index, Shannon’s species diversity index, and inverse Simpson’s index. In order to find geographical, environmental, and/or human-related predictors of fox parasite diversity, we recorded 45 variables related to topography, climate, lithology, habitat heterogeneity, land use, spatial situation, human activity, sampling effort, and fox presence probability (obtained after environmental modelling of fox distribution). We then performed a stepwise linear regression of each diversity index on these variables, to find a minimal subset of statistically significant variables that account for the variation in each diversity index. We found that most parasite diversity indices increase with the mean distance to urban centres, or in other words, foxes in more rural provinces have a more diverse helminth fauna. Sampling effort and fox presence probability (probably related to fox density) also appeared as conditioning variables for some indices, as well as soil permeability (related with water availability). We then extrapolated the models to predict these fox parasite diversity indices in non-sampled provinces and have a view of their geographical trends

    Directional control of charge and valley currents in a graphene-based device

    Full text link
    We propose a directional switching effect in a metallic device. To such end we exploit a graphene-based device with a three-terminal geometry in the presence of a magnetic field. We show that unidirectional charge and valley currents can be controlled by the Fermi energy and the magnetic field direction in the active device. Interestingly, unidirectional transport of charge and valley is generated between two-terminals at the same bias voltage. Furthermore, we quantify the valley depolarization as a function of disorder concentration. Our results open a way for active graphene-based valleytronics devices

    Topological states of non-Hermitian systems

    Full text link
    Recently, the search for topological states of matter has turned to non-Hermitian systems, which exhibit a rich variety of unique properties without Hermitian counterparts. Lattices modeled through non-Hermitian Hamiltonians appear in the context of photonic systems, where one needs to account for gain and loss, circuits of resonators, and also when modeling the lifetime due to interactions in condensed matter systems. Here we provide a brief overview of this rapidly growing subject, the search for topological states and a bulk-boundary correspondence in non-Hermitian systems.Comment: Invited short review for the special issue "Topological States of Matter: Theory and Applications

    Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots

    Get PDF
    Several widespread changes in the ecology of old-growth tropical forests have recently been documented for the late twentieth century, in particular an increase in stem turnover (pan-tropical), and an increase in above-ground biomass (neotropical). Whether these changes are synchronous and whether changes in growth are also occurring is not known. We analysed stand-level changes within 50 long-term. monitoring plots from across South America spanning 1971-2002. We show that: (i) basal area (BA: sum of the cross-sectional areas of all trees in a plot) increased significantly over time (by 0.10 +/- 0.04 m(2) ha(-1) yr(-1), mean +/- 95% CI); as did both (ii) stand-level BA growth rates (sum of the increments of BA of surviving trees and BA of new trees that recruited into a plot); and (iii) stand-level BA mortality rates (sum of the cross-sectional areas of all trees that died in a plot). Similar patterns were observed on a per-stem basis: (i) stem density (number of stems per hectare; 1 hectare is 10(4) m(2)) increased significantly over time (0.94 +/- 0.63 stems ha(-1) yr(-1)); as did both (ii) stem recruitment rates; and (iii) stem mortality rates. In relative terms, the pools of BA and stem density increased by 0.38 +/- 0.15% and 0.18 +/- 0.12% yr(-1), respectively. The fluxes into and out of these pools-stand-level BA growth, stand-level BA mortality, stem recruitment and stem mortality rates-increased, in relative terms, by an order of magnitude more. The gain terms (BA growth, stem recruitment) consistently exceeded the loss terms (BA loss, stem mortality) throughout the period, suggesting that whatever process is driving these changes was already acting before the plot network was established. Large long-term increases in stand-level BA growth and simultaneous increases in stand BA and stem density imply a continent-wide increase in resource availability which is increasing net primary productivity and altering forest dynamics. Continent-wide changes in incoming solar radiation, and increases in atmospheric concentrations of CO2 and air temperatures may have increased resource supply over recent decades, thus causing accelerated growth and increased dynamism across the world's largest tract of tropical forest

    Lifestyle and comorbid conditions as risk factors for community-acquired pneumonia in outpatient adults (NEUMO-ES-RISK project)

    Get PDF
    Introduction: Information about community-acquired pneumonia (CAP) risk in primary care is limited. We assess different lifestyle and comorbid conditions as risk factors (RF) for CAP in adults in primary care. Methods: A retrospective-observational-controlled study was designed. Adult CAP cases diagnosed at primary care in Spain between 2009 and 2013 were retrieved using the National Surveillance System of Primary Care Data (BiFAP). Age-matched and sex-matched controls were selected by incidence density sampling (ratio 2:1). Associations are presented as percentages and OR. Binomial regression models were constructed to avoid bias effects. Results: 51 139 patients and 102 372 controls were compared. Mean age (SD) was 61.4 (19.9) years. RF more significantly linked to CAP were: HIV (OR [95% CI]: 5.21 [4.35 to 6.27]), chronic obstructive pulmonary disease (COPD) (2.97 [2.84 to 3.12]), asthma (2.16 [2.07,2.26]), smoking (1.96 [1.91 to 2.02]) and poor dental hygiene (1.45 [1.41 to 1.49]). Average prevalence of any RF was 82.2% in cases and 69.2% in controls (2.05 [2.00 to 2.10]). CAP rate increased with the accumulation of RF and age: risk associated with 1RF was 1.42 (1.37 to 1.47) in 18-60-year-old individuals vs 1.57 (1.49 to 1.66) in >60 years of age, with 2RF 1.88 (1.80 to 1.97) vs 2.35 (2.23, 2.48) and with >/= 3 RF 3.11 (2.95, 3.30) vs 4.34 (4.13 to 4.57). Discussion: Prevalence of RF in adult CAP in primary care is high. Main RFs associated are HIV, COPD, asthma, smoking and poor dental hygiene. Our risk stacking results could help clinicians identify patients at higher risk of pneumonia

    3D printed scaled setup for smoke transport analysis in a subterranean passenger platform

    Get PDF
    In this work, the study of smoke fire transportation inside of a subway passenger platform is presented. The study includes a set of numerical simulations to observe the behavior of the smoke inside the platform. Two smoke transport simulations using the FDS program are also included. Subsequently, the development of a 3D - 1:100 scale model is described and it was used to perform an experimental observation of the phenomenon. The model was built by using a 3D printer which allowed to include more architectural details of the real scenario. The inclusion of these details allowed to observe qualitative similarity between the results of the simulation and the experimental work. Although there are clear differences between what could happen in a real scenario and what was observed in the scale model, it was identified that the model is an important complement to the simulations. In addition to the simulations, the use of this type of 3D models allows the observation of the phenomenon by different specialists such as firefighters, policeman, medical personnel, etc., in the same place and its intention is to provide a more interactive tool to the observation group, increasing the time devoted to the development of contingency actions and reducing the costs associated with the logistics of a real simulacrum. The model allows to better identify the strengths, opportunities, weaknesses and threats of the contingency procedures developed by the safety and hygiene groups and to make their corresponding adjustments if necessary.Peer Reviewe

    SPH-DEM Coupling for Debris Flows

    Get PDF
    Debris flows are natural events with a high potential of damage due to the materials, volume, and velocity they can reach once the flows were triggered. Mathematical models and numerical schemes constitute a transcendental way to get a deeper comprehension of these natural phenomena. Thus, the coupling of numerical methods is becoming more relevant to describe the behaviour of debris flows. The coupling of Smooth Particle Hydrodynamics (SPH) and Discrete Element Method (DEM) is presented in this work to show the capability to represent the interaction of several materials simultaneously. SPH is employed to represent the fluid and soil by using different constitutive models, from a continuum approach. On the other hand, DEM describes immersed objects to represent large boulders and unmoveable boundary conditions. Thus, it is possible to couple the behaviour occurring at very different scales, fines and water through the continuum approach, and boulders with the discrete one. A hypothetical case here presented shows the potential of our coupling method for simulating debris flows
    • …
    corecore