304 research outputs found

    Linear array CMOS detectors for laser doppler blood flow imaging

    Get PDF
    Laser Doppler blood flow imaging is well established as a tool for clinical research. The technique has considerable potential as an aid to diagnosis and as a treatment aid in a number of situations. However, to make widespread clinical use of a blood flow imager feasible a number of refinements are required to make the device easy to use, accurate and safe. Existing LDBF systems consist of 2D imaging systems, and single point scanning systems. 2D imaging systems can offer fast image acquisition time, and hence high frame rate. However, these require high laser power to illuminate the entire target area with sufficient power. Single point scanning systems allow lower laser power to be used, but building up an image of flow in skin requires mechanical scanning of the laser, which results in a high image acquisition time, making the system awkward to use. A new approach developed here involves scanning a line along a target, and imaging the line with a 1D sensor array. This means that only one axis of mechanical scanning is required, reducing the scanning speed, and the laser power is vastly reduced from that required for a 2D system. This approach lends itself well to the use of integrated CMOS detectors, as the smaller pixel number means that a linear sensor array can be implemented on an IC which has integrated processing while keeping overall IC size, and hence cost, lower than equivalent 2D imaging systems. A number of front-end and processing circuits are investigated in terms of their suitability for this application. This is done by simulating a range of possible designs, including several logarithmic pixels, active pixel sensors and opamp-based linear front-ends. Where possible previously fabricated ICs using similar sensors were tested in a laser Doppler flowmetry system to verify simulation results. A first prototype IC (known as BVIPS1) implements a 64x1 array of buffered logarithmic pixels, chosen for their combination of sufficient gain and bandwidth and compact size. The IC makes use of the space available to include two front-end circuits per pixel, allowing other circuits to be prototyped. This allows a linear front-end based on opamps to be tested. It is found that both designs can detect changes in blood flow despite significant discrepancies between simulated and measured IC performance. However, the signal-noise ratio for flux readings is high, and the logarithmic pixel array suffers from high fixed pattern noise, and noise and distortion that makes vein location impossible. A second prototype IC (BVIPS2) consists of dual 64x1 arrays, and integrated processing. The sensor arrays are a logarithmic array, which addresses the problems of the first IC and uses alternative, individually selectable front-ends for each pixel to reduce fixed-pattern noise, and an array of opamp-based linear detectors. Simulation and initial testing is performed to show that this design operates as intended, and partially overcomes the problems found on the previous IC - the IC shows reduced fixed pattern noise and better spatial detection of blood flow changes, although there is still significant noise

    Rats About Town: A Systematic Review of Rat Movement in Urban Ecosystems

    Get PDF
    Norway and black rats (Rattus norvegicus and Rattus rattus) are ubiquitous urban pests, inhabiting cities worldwide. Despite their close association with people, urban rats remain difficult to control. This can be partly attributed to a general lack of information on basic rat ecology to inform management efforts. In this systematic review and narrative synthesis, we collate the published literature to provide a comprehensive description of what is known about urban rat movement, including information on home range, site fidelity, dispersal, movement patterns, barriers to, and factors impacting, movement. We also discuss the methodologies used to track and infer rat movement, as well as the advantages and limitations of employing these techniques. Our review suggests that the distances traveled by urban rats are location-specific, determined by both local resource availability and barriers to movement such as roadways. Although roads may impede rat movement, genetic techniques suggest that rats traverse roadways more often than revealed by capture-based tools, while long-distance dispersal events by either natural migration or facilitated by humans (i.e., as stowaways in transport vehicles) can maintain connectivity among distant populations. Because rat movement patterns are related to the transmission of rat-associated pathogens and the success of rodent control programs, these results have implications for city planners, pest control efforts, and public health. Therefore, we emphasize the importance of understanding local rat movement patterns in order to devise and deploy efficient and effective rat mitigation initiatives in urban centers

    Direct monitoring of active geohazards: emerging geophysical tools for deep-water assessments

    Get PDF
    Seafloor networks of cables, pipelines, and other infrastructure underpin our daily lives, providing communication links, information, and energy supplies. Despite their global importance, these networks are vulnerable to damage by a number of natural seafloor hazards, including landslides, turbidity currents, fluid flow, and scour. Conventional geophysical techniques, such as high-resolution reflection seismic and side-scan sonar, are commonly employed in geohazard assessments. These conventional tools provide essential information for route planning and design; however, such surveys provide only indirect evidence of past processes and do not observe or measure the geohazard itself. As such, many numerical-based impact models lack field-scale calibration, and much uncertainty exists about the triggers, nature, and frequency of deep-water geohazards. Recent advances in technology now enable a step change in their understanding through direct monitoring. We outline some emerging monitoring tools and how they can quantify key parameters for deepwater geohazard assessment. Repeat seafloor surveys in dynamic areas show that solely relying on evidence from past deposits can lead to an under-representation of the geohazard events. Acoustic Doppler current profiling provides new insights into the structure of turbidity currents, whereas instrumented mobile sensors record the nature of movement at the base of those flows for the first time. Existing and bespoke cabled networks enable high bandwidth, low power, and distributed measurements of parameters such as strain across large areas of seafloor. These techniques provide valuable new measurements that will improve geohazard assessments and should be deployed in a complementary manner alongside conventional geophysical tools

    Rat in a Cage: Trappability of Urban Norway Rats (Rattus norvegicus)

    Get PDF
    Understanding the local ecology of urban Norway rats (Rattus norevgicus) is necessary to inform effective rat mitigation strategies. While Capture-Mark-Recapture (CMR) methods can be used to acquire such ecological information (e.g., abundance, movement patterns, and habitat use), these techniques assume that all individuals of the study population are equally trappable. To test whether urban rats adhere to this assumption, we conducted a 4-week CMR study in an urban neighborhood of Vancouver, Canada, to evaluate whether rat characteristics (i.e., age, sex, size, wound status, and infection with the pathogen Leptospira spp.) were associated with trappability. We found that the majority of rats entered traps in the first 2 weeks of trapping, and that larger rats were caught earlier in the trapping period. However, smaller, sexually immature rats were recaught more often than were larger, sexually mature rats, suggesting that prior capture affects the ability to recapture urban Norway rats. This highlights the need for CMR studies to account for size, sexual maturity, and prior capture when interpreting data

    The National Competency Framework for registered nurses in adult critical care: An overview

    Get PDF
    In the years following the abolition of the English National Board for Nursing, Midwifery and Health Visiting (ENB) in 2002, concerns were raised within the Critical Care nursing community about a lack of consistency in post-registration education programmes. In response to this the Critical Care Network National Nurse Leads (CC3N) formed a sub-group, the Critical Care Nurse Education Review Forum (CCNERF) to address these concerns. A review of UK course provision confirmed marked inconsistency in the length, content and associated academic award. The CCNERF commenced a two phase project, first developing national standards for critical care nurse education such as length of course and academic credit level; followed by the development of a national competency framework1, 2. Following significant review and revision, version two of the National Competency Framework for Registered Nurses in Adult Critical Care was published by CC3N in 20153. This paper introduces the National Competency Framework and provides an overview of its background, development and implementation. It then considers the future direction of UK post-registration Critical Care nurse education

    Opto-mechanical measurement of micro-trap via nonlinear cavity enhanced Raman scattering spectrum

    Full text link
    High-gain resonant nonlinear Raman scattering on trapped cold atoms within a high-fineness ring optical cavity is simply explained under a nonlinear opto-mechanical mechanism, and a proposal using it to detect frequency of micro-trap on atom chip is presented. The enhancement of scattering spectrum is due to a coherent Raman conversion between two different cavity modes mediated by collective vibrations of atoms through nonlinear opto-mechanical couplings. The physical conditions of this technique are roughly estimated on Rubidium atoms, and a simple quantum analysis as well as a multi-body semiclassical simulation on this nonlinear Raman process is conducted.Comment: 7 pages, 2 figure

    The National Competency Framework for Registered Nurses in Adult Critical Care: an overview

    Get PDF
    In the years following the abolition of the English National Board for Nursing, Midwifery and Health Visiting in 2002, concerns were raised within the Critical Care nursing community about a lack of consistency in post-registration education programmes. In response to this, the Critical Care Network National Nurse Leads (CC3N) formed a sub-group, the Critical Care Nurse Education Review Forum (CCNERF) to address these concerns. A review of UK course provision confirmed marked inconsistency in the length, content and associated academic award. The CCNERF commenced a two-phase project, first developing national standards for critical care nurse education such as length of course and academic credit level, followed by the development of a national competency framework. Following significant review and revision, version two of the National Competency Framework for Registered Nurses in Adult Critical Care was published by CC3N in 2015. This paper introduces the National Competency Framework and provides an overview of its background, development and implementation. It then considers the future direction of UK post-registration Critical Care nurse education

    Nanolitre real-time PCR detection of bacterial, parasitic, and viral agents from patients with diarrhoea in Nunavut, Canada

    Get PDF
    Background. Little is known about the microbiology of diarrhoeal disease in Canada's Arctic regions. There are a number of limitations of conventional microbiology testing techniques for diarrhoeal pathogens, and these may be further compromised in the Arctic, given the often long distances for specimen transport. Objective. To develop a novel multiple-target nanolitre real-time reverse transcriptase (RT)-PCR platform to simultaneously test diarrhoeal specimens collected from residents of the Qikiqtani (Baffin Island) Region of Nunavut, Canada, for a wide range of bacterial, parasitic and viral agents. Study design/methods. Diarrhoeal stool samples submitted for bacterial culture to Qikiqtani General Hospital in Nunavut over an 18-month period were tested with a multiple-target nanolitre real-time PCR panel for major diarrhoeal pathogens including 8 bacterial, 6 viral and 2 parasitic targets. Results. Among 86 stool specimens tested by PCR, a total of 50 pathogens were detected with 1 or more pathogens found in 40 (46.5%) stool specimens. The organisms detected comprised 17 Cryptosporidium spp., 5 Clostridium difficile with toxin B, 6 Campylobacter spp., 6 Salmonella spp., 4 astroviruses, 3 noroviruses, 1 rotavirus, 1 Shigella spp. and 1 Giardia spp. The frequency of detection by PCR and bacterial culture was similar for Salmonella spp., but discrepant for Campylobacter spp., as Campylobacter was detected by culture from only 1/86 specimens. Similarly, Cryptosporidium spp. was detected in multiple samples by PCR but was not detected by microscopy or enzyme immunoassay. Conclusions. Cryptosporidium spp., Campylobacter spp. and Clostridium difficile may be relatively common but possibly under-recognised pathogens in this region. Further study is needed to determine the regional epidemiology and clinical significance of these organisms. This method appears to be a useful tool for gastrointestinal pathogen research and may also be helpful for clinical diagnostics and outbreak investigation in remote regions where the yield of routine testing may be compromised

    Global population divergence and admixture of the brown rat (Rattus norvegicus)

    Get PDF
    Native to China and Mongolia, the brown rat (Rattus norvegicus) now enjoys a worldwide distribution. While black rats and the house mouse tracked the regional development of human agricultural settlements, brown rats did not appear in Europe until the 1500s, suggesting their range expansion was a response to relatively recent increases in global trade. We inferred the global phylogeography of brown rats using 32 k SNPs, and detected 13 evolutionary clusters within five expansion routes. One cluster arose following a southward expansion into Southeast Asia. Three additional clusters arose from two independent eastward expansions: one expansion from Russia to the Aleutian Archipelago, and a second to western North America. Westward expansion resulted in the colonization of Europe from which subsequent rapid colonization of Africa, the Americas and Australasia occurred, and multiple evolutionary clusters were detected. An astonishing degree of fine-grained clustering between and within sampling sites underscored the extent to which urban heterogeneity shaped genetic structure of commensal rodents. Surprisingly, few individuals were recent migrants, suggesting that recruitment into established populations is limited. Understanding the global population structure of R. norvegicus offers novel perspectives on the forces driving the spread of zoonotic disease, and aids in development of rat eradication programmes
    • …
    corecore