288 research outputs found

    IMF Dependence of Energetic Oxygen and Hydrogen Ion Distributions in the Near-Earth Magnetosphere

    Get PDF
    Energetic ion distributions in the near-Earth plasma sheet can provide important information for understanding the entry of ions into the magnetosphere and their transportation, acceleration, and losses in the near-Earth region. In this study, 11 years of energetic proton and oxygen observations (\u3e ~274 keV) from Cluster/Research with Adaptive Particle Imaging Detectors were used to statistically study the energetic ion distributions in the near-Earth region. The dawn-dusk asymmetries of the distributions in three different regions (dayside magnetosphere, near-Earth nightside plasma sheet, and tail plasma sheet) are examined in Northern and Southern Hemispheres. The results show that the energetic ion distributions are influenced by the dawn-dusk interplanetary magnetic field (IMF) direction. The enhancement of ion intensity largely correlates with the location of the magnetic reconnection at the magnetopause. The results imply that substorm-related acceleration processes in the magnetotail are not the only source of energetic ions in the dayside and the near-Earth magnetosphere. Energetic ions delivered through reconnection at the magnetopause significantly affect the energetic ion population in the magnetosphere. We also believe that the influence of the dawn-dusk IMF direction should not be neglected in models of the particle population in the magnetosphere

    The effect of diamagnetic drift on motion of the dayside magnetopause reconnection line

    Get PDF
    Magnetic reconnection at the magnetopause occurs with a large density asymmetry and for a large range of magnetic shears. In these conditions, a motion of the X line has been predicted in the direction of the electron diamagnetic drift. When this motion is super Alfvenic, reconnection should be suppressed. We analysed a large data set of Double Star TC-1 dayside magnetopause crossings, which includes reconnection and nonreconnection events. Moreover, it also includes several events during which TC-1 is near the X line. With these close events, we verified the diamagnetic suppression condition with local observations near the X line. Moreover, with the same close events, we also studied the motion of the X line along the magnetopause. It is found that, when reconnection is not suppressed, the X line moves northward or southward according to the orientation of the guide field, which is related to the interplanetary magnetic field BY component, in agreement with the diamagnetic drift

    Energetic neutral atoms from the Earth's subsolar magnetopause

    Get PDF
    The shocked solar wind in the Earth's magnetosheath becomes nearly stationary at the subsolar magnetopause. At this location, solar wind protons are neutralized by charge exchange with neutral hydrogen atoms at the extreme limits of the Earth's tenuous exosphere. The resulting Energetic Neutral Atoms (ENAs) propagate away from the subsolar region in nearly all directions. Simultaneous observations of hydrogen ENAs from the Interstellar Boundary Explorer (IBEX) and proton distributions in the magnetosheath from the Cluster spacecraft are used to quantify this charge exchange process. By combining these observations with a relatively simple model, estimates are obtained for the ratio of ENA to shocked solar wind flux (about 10−4) and the exospheric density at distances greater than 10 Earth Radii (RE) upstream from the Earth (about 8 cm−3)

    Neutral Atom Imaging of the Solar Wind‐Magnetosphere‐Exosphere Interaction Near the Subsolar Magnetopause

    Get PDF
    Energetic neutral atoms (ENAs) created by charge‐exchange of ions with the Earth's hydrogen exosphere near the subsolar magnetopause yield information on the distribution of plasma in the outer magnetosphere and magnetosheath. ENA observations from the Interstellar Boundary Explorer (IBEX) are used to image magnetosheath plasma and, for the first time, low‐energy magnetospheric plasma near the magnetopause. These images show that magnetosheath plasma is distributed fairly evenly near the subsolar magnetopause; however, low‐energy magnetospheric plasma is not distributed evenly in the outer magnetosphere. Simultaneous images and in situ observations from the Magnetospheric Multiscale (MMS) spacecraft from November 2015 (during the solar cycle declining phase) are used to derive the exospheric density. The ~11–17 cm−3 density at 10 RE is similar to that obtained previously for solar minimum. Thus, these combined results indicate that the exospheric density 10 RE from the Earth may have a weak dependence on solar cycle

    Heliospheric Neutral Atom Spectra Between 0.01 and 6 keV fom IBEX

    Get PDF
    Since 2008 December, the Interstellar Boundary Explorer (IBEX) has been making detailed observations of neutrals from the boundaries of the heliosphere using two neutral atom cameras with overlapping energy ranges. The unexpected, yet defining feature discovered by IBEX is a Ribbon that extends over the energy range from about 0.2 to 6 keV. This Ribbon is superposed on a more uniform, globally distributed heliospheric neutral population. With some important exceptions, the focus of early IBEX studies has been on neutral atoms with energies greater than approx. 0.5 keV. With nearly three years of science observations, enough low-energy neutral atom measurements have been accumulated to extend IBEX observations to energies less than approx. 0.5 keV. Using the energy overlap of the sensors to identify and remove backgrounds, energy spectra over the entire IBEX energy range are produced. However, contributions by interstellar neutrals to the energy spectrum below 0.2 keV may not be completely removed. Compared with spectra at higher energies, neutral atom spectra at lower energies do not vary much from location to location in the sky, including in the direction of the IBEX Ribbon. Neutral fluxes are used to show that low energy ions contribute approximately the same thermal pressure as higher energy ions in the heliosheath. However, contributions to the dynamic pressure are very high unless there is, for example, turbulence in the heliosheath with fluctuations of the order of 50-100 km/s

    Measurements of ϕ\phi meson production in relativistic heavy-ion collisions at RHIC

    Get PDF
    We present results for the measurement of ϕ\phi meson production via its charged kaon decay channel ϕK+K\phi \to K^+K^- in Au+Au collisions at sNN=62.4\sqrt{s_{_{NN}}}=62.4, 130, and 200 GeV, and in p+pp+p and dd+Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV from the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). The midrapidity (y<0.5|y|<0.5) ϕ\phi meson transverse momentum (pTp_{T}) spectra in central Au+Au collisions are found to be well described by a single exponential distribution. On the other hand, the pTp_{T} spectra from p+pp+p, dd+Au and peripheral Au+Au collisions show power-law tails at intermediate and high pTp_{T} and are described better by Levy distributions. The constant ϕ/K\phi/K^- yield ratio vs beam species, collision centrality and colliding energy is in contradiction with expectations from models having kaon coalescence as the dominant mechanism for ϕ\phi production at RHIC. The Ω/ϕ\Omega/\phi yield ratio as a function of pTp_{T} is consistent with a model based on the recombination of thermal ss quarks up to pT4p_{T}\sim 4 GeV/cc, but disagrees at higher transverse momenta. The measured nuclear modification factor, RdAuR_{dAu}, for the ϕ\phi meson increases above unity at intermediate pTp_{T}, similar to that for pions and protons, while RAAR_{AA} is suppressed due to the energy loss effect in central Au+Au collisions. Number of constituent quark scaling of both RcpR_{cp} and v2v_{2} for the ϕ\phi meson with respect to other hadrons in Au+Au collisions at sNN\sqrt{s_{_{NN}}}=200 GeV at intermediate pTp_{T} is observed. These observations support quark coalescence as being the dominant mechanism of hadronization in the intermediate pTp_{T} region at RHIC.Comment: 22 pages, 21 figures, 4 table

    Spin alignment measurements of the K0(892)K^{*0}(892) and ϕ(1020)\phi(1020) vector mesons at RHIC

    Get PDF
    We present the first spin alignment measurements for the K0(892)K^{*0}(892) and ϕ(1020)\phi(1020) vector mesons produced at mid-rapidity with transverse momenta up to 5 GeV/c at sNN\sqrt{s_{NN}} = 200 GeV at RHIC. The diagonal spin density matrix elements with respect to the reaction plane in Au+Au collisions are ρ00\rho_{00} = 0.32 ±\pm 0.04 (stat) ±\pm 0.09 (syst) for the K0K^{*0} (0.8<pT<5.00.8<p_T<5.0 GeV/c) and ρ00\rho_{00} = 0.34 ±\pm 0.02 (stat) ±\pm 0.03 (syst) for the ϕ\phi (0.4<pT<5.00.4<p_T<5.0 GeV/c), and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector meson spins. Spin alignments for K0K^{*0} and ϕ\phi in Au+Au collisions were also measured with respect to the particle's production plane. The ϕ\phi result, ρ00\rho_{00} = 0.41 ±\pm 0.02 (stat) ±\pm 0.04 (syst), is consistent with that in p+p collisions, ρ00\rho_{00} = 0.39 ±\pm 0.03 (stat) ±\pm 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.Comment: 7 pages, 4 figures. fig.1 updated; one more reference added, one typo corrected, published in PRC.77.06190

    System-Size Independence of Directed Flow Measured at the BNL Relativistic Heavy-Ion Collider

    Get PDF
    We measure directed flow (ν_1) for charged particles in Au+Au and Cu+Cu collisions at √S_(NN)=200 and 62.4 GeV, as a function of pseudorapidity (η), transverse momentum (p_t), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to ν_1 in different collision systems, and investigate possible explanations for the observed sign change in ν_1(p_t)
    corecore