1,774 research outputs found

    Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebra disc (IVD) degeneration treatment

    Get PDF
    Spinal fusion is the gold standard surgical procedure for degenerative spinal conditions when conservative therapies have been unsuccessful in rehabilitation of patients. Novel strategies are required to improve biocompatibility and osseointegration of traditionally used materials for lumbar cages. Furthermore, new design and technologies are needed to bridge the gap due to the shortage of optimal implant sizes to fill the intervertebral disc defect. Within this context, additive manufacturing technology presents an excellent opportunity to fabricate ergonomic shape medical implants. The goal of this study is to design and manufacture a 3D-printed lumbar cage for lumbar interbody fusion. Optimisations of the proposed implant design and its printing parameters were achieved via in silico analysis. The final construct was characterised via scanning electron microscopy, contact angle, x-ray micro computed tomography (ÎŒCT), atomic force microscopy, and compressive test. Preliminary in vitro cell culture tests such as morphological assessment and metabolic activities were performed to access biocompatibility of 3D-printed constructs. Results of in silico analysis provided a useful platform to test preliminary cage design and to find an optimal value of filling density for 3D printing process. Surface characterisation confirmed a uniform coating of nHAp with nanoscale topography. Mechanical evaluation showed mechanical properties of final cage design similar to that of trabecular bone. Preliminary cell culture results showed promising results in terms of cell growth and activity confirming biocompatibility of constructs. Thus for the first time, design optimisation based on computational and experimental analysis combined with the 3D-printing technique for intervertebral fusion cage has been reported in a single study. 3D-printing is a promising technique for medical applications and this study paves the way for future development of customised implants in spinal surgical applications

    A development cooperation Erasmus Mundus partnership for capacity building in earthquake mitigation science and higher education

    Get PDF
    Successful practices have shown that a community’s capacity to manage and reduce its seismic risk relies on capitalization on policies, on technology and research results. An important role is played by education, than contribute to strengthening technical curricula of future practitioners and researchers through university and higher education programs. EUNICE is a European Commission funded higher education partnership for international development cooperation with the objective to build capacity of individuals who will operate at institutions located in seismic prone Asian Countries. The project involves five European Universities, eight Asian universities and four associations and NGOs active in advanced research on seismic mitigation, disaster risk management and international development. The project consists of a comprehensive mobility scheme open to nationals from Afghanistan, Bangladesh, China, Nepal, Pakistan, Thailand, Bhutan, India, Indonesia, Malaysia, Maldives, North Korea, Philippines, and Sri Lanka who plan to enroll in school or conduct research at one of five European partner universities in Italy, Greece and Portugal. During the 2010-14 time span a total number of 104 mobilities are being involved in scientific activities at the undergraduate, masters, PhD, postdoctoral and academic-staff exchange levels. Researchers, future policymakers and practitioners build up their curricula over a range of disciplines in the fields of earthquake engineering, seismology, disaster risk management and urban planning

    EU-NICE, Eurasian University Network for International Cooperation in Earthquakes

    Get PDF
    Despite the remarkable scientific advancements of earthquake engineering and seismology in many countries, seismic risk is still growing at a high rate in the world’s most vulnerable communities. Successful practices have shown that a community’s capacity to manage and reduce its seismic risk relies on capitalization on policies, on technology and research results. An important role is played by education, than contribute to strengthening technical curricula of future practitioners and researchers through university and higher education programmes. In recent years an increasing number of initiatives have been launched in this field at the international and global cooperation level. Cooperative international academic research and training is key to reducing the gap between advanced and more vulnerable regions. EU-NICE is a European Commission funded higher education partnership for international development cooperation with the objective to build capacity of individuals who will operate at institutions located in seismic prone Asian Countries. The project involves five European Universities, eight Asian universities and four associations and NGOs active in advanced research on seismic mitigation, disaster risk management and international development. The project consists of a comprehensive mobility scheme open to nationals from Afghanistan, Bangladesh, China, Nepal, Pakistan, Thailand, Bhutan, India, Indonesia, Malaysia, Maldives, North Korea, Philippines, and Sri Lanka who plan to enrol in school or conduct research at one of five European partner universities in Italy, Greece and Portugal. During the 2010-14 time span a total number of 104 mobilities are being involved in scientific activities at the undergraduate, masters, PhD, postdoctoral and academic-staff exchange levels. This high number of mobilities and activities is selected and designed so as to produce an overall increase of knowledge that can result in an impact on earthquake mitigation. Researchers, future policymakers and practitioners build up their curricula over a range of disciplines in the fields of engineering, seismology, disaster risk management and urban planning. Specific educational and research activities focus on earthquake risk mitigation related topics such as: anti-seismic structural design, structural engineering, advanced computer structural collapse analysis, seismology, experimental laboratory studies, international and development issues in disaster risk management, social-economical impact studies, international relations and conflict resolution

    Accuracy of Molecular Simulation-Based Predictions of koff Values: A Metadynamics Study

    Get PDF
    The koff values of ligands unbinding to proteins are key parameters for drug discovery. Their predictions based on molecular simulation may under- or overestimate experiment in a system- and/or technique-dependent way. Here we use an established method-infrequent metadynamics, based on the AMBER force field-to compute the koff of the ligand iperoxo (in clinical use) targeting the muscarinic receptor M2. The ligand charges are calculated by either (i) the Amber standard procedure or (ii) B3LYP-DFT. The calculations using (i) turn out not to provide a reasonable estimation of the transition-state free energy. Those using (ii) differ from experiment by 2 orders of magnitude. On the basis of B3LYP DFT QM/MM simulations, we suggest that the observed discrepancy in (ii) arises, at least in part, from the lack of electronic polarization and/or charge transfer in biomolecular force fields. These issues might be present in other systems, such as DNA-protein complexes

    Laughlin Wave Function and One-Dimensional Free Fermions

    Full text link
    Making use of the well-known phase space reduction in the lowest Landau level(LLL), we show that the Laughlin wave function for the Μ=1m\nu = {1\over m} case can be obtained exactly as a coherent state representation of an one dimensional (1D)(1D) wave function. The 1D1D system consists of mm copies of free fermions associated with each of the NN electrons, confined in a common harmonic well potential. Interestingly, the condition for this exact correspondence is found to incorporate Jain's parton picture. We argue that, this correspondence between the free fermions and quantum Hall effect is due to the mapping of the 1D1D system under consideration, to the Gaussian unitary ensemble in the random matrix theory.Comment: 7 pages, Latex , no figure

    Iron Age and Anglo-Saxon genomes from East England reveal British migration history

    Get PDF
    British population history has been shaped by a series of immigrations, including the early Anglo-Saxon migrations after 400 CE. It remains an open question how these events affected the genetic composition of the current British population. Here, we present whole-genome sequences from 10 individuals excavated close to Cambridge in the East of England, ranging from the late Iron Age to the middle Anglo-Saxon period. By analysing shared rare variants with hundreds of modern samples from Britain and Europe, we estimate that on average the contemporary East English population derives 38% of its ancestry from Anglo-Saxon migrations. We gain further insight with a new method, rarecoal, which infers population history and identifies fine-scale genetic ancestry from rare variants. Using rarecoal we find that the Anglo-Saxon samples are closely related to modern Dutch and Danish populations, while the Iron Age samples share ancestors with multiple Northern European populations including Britain

    Finite-size scaling and the toroidal partition function of the critical asymmetric six-vertex model

    Full text link
    Finite-size corrections to the energy levels of the asymmetric six-vertex model transfer matrix are considered using the Bethe ansatz solution for the critical region. The non-universal complex anisotropy factor is related to the bulk susceptibilities. The universal Gaussian coupling constant gg is also related to the bulk susceptibilities as g=2H−1/2/πg=2H^{-1/2}/\pi, HH being the Hessian of the bulk free energy surface viewed as a function of the two fields. The modular covariant toroidal partition function is derived in the form of the modified Coulombic partition function which embodies the effect of incommensurability through two mismatch parameters. The effect of twisted boundary conditions is also considered.Comment: 19 pages, 5 Postscript figure files in the form of uuencoded compressed tar fil

    Single-stage sealing of ceramic tiles by means of high power diode laser radiation

    Get PDF
    An investigation has been carried out using a 60 W high power diode laser (HPDL) to determine the feasibility of sealing the void between adjoining ceramic tiles with a specially developed grout material. A single-stage process has subsequently been devised using a new grout material which consists of two distinct components: a crushed ceramic tile mix substrate and a glazed enamel surface; the crushed ceramic tile mix provides a tough, inexpensive bulk substrate, whilst the enamel provides an impervious surface glaze. HPDL processing has resulted in crack and porosity free seals produced in normal atmospheric conditions. The single-stage grout is simple to formulate and easy to apply. Tiles were successfully sealed with power densities as low as 750 W/cm2 and at rates of up to 420 mm/min. Bonding of the enamel to the crushed ceramic tile mix was identified as being primarily due to van der Waals forces and, on a very small scale, some of the crushed ceramic tile mix material dissolving into the glaze

    A Cryogenic Underground Observatory for Rare Events: Cuore, an Update

    Get PDF
    CUORE is a proposed tightly packed array of 1000 TeO_{2} bolometers, each being a cube 5 cm on a side with a mass of 750 gms. The array consists of 25 vertical towers, arranged in a square, of 5 towers by 5 towers, each containing 10 layers of 4 crystals. The design of the detector is optimized for ultralow- background searches for neutrinoless double beta decay of ^{130}Te (33.8% abundance), cold dark matter, solar axions, and rare nuclear decays. A preliminary experiment involving 20 crystals of various sizes (MIBETA) has been completed, and a single CUORE tower is being constructed as a smaller scale experiment called CUORICINO. The expected performance and sensitivity, based on Monte Carlo simulations and extrapolations of present results, are reported.Comment: in press: Nucl. Phys. of Russian Academy of Sc

    A New Limit on the Neutrinoless DBD of 130Te

    Full text link
    We report the present results of CUORICINO a cryogenic experiment on neutrinoless double beta decay (DBD) of 130Te consisting of an array of 62 crystals of TeO2 with a total active mass of 40.7 kg. The array is framed inside of a dilution refrigerator, heavily shielded against environmental radioactivity and high-energy neutrons, and operated at a temperature of ~8 mK in the Gran Sasso Underground Laboratory. Temperature pulses induced by particle interacting in the crystals are recorded and measured by means of Neutron Transmutation Doped thermistors. The gain of each bolometer is stabilized with voltage pulses developed by a high stability pulse generator across heater resistors put in thermal contact with the absorber. The calibration is performed by means of two thoriated wires routinely inserted in the set-up. No evidence for a peak indicating neutrinoless DBD of 130Te is detected and a 90% C.L. lower limit of 1.8E24 years is set for the lifetime of this process. Taking largely into account the uncertainties in the theoretical values of nuclear matrix elements, this implies an upper boud on the effective mass of the electron neutrino ranging from 0.2 to 1.1 eV. This sensitivity is similar to those of the 76Ge experiments.Comment: 4 pages, 2 figure
    • 

    corecore