
ARTICLE

Received 4 Aug 2015 | Accepted 9 Dec 2015 | Published 19 Jan 2016

Iron Age and Anglo-Saxon genomes from East
England reveal British migration history
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British population history has been shaped by a series of immigrations, including the early

Anglo-Saxon migrations after 400 CE. It remains an open question how these events affected

the genetic composition of the current British population. Here, we present whole-genome

sequences from 10 individuals excavated close to Cambridge in the East of England, ranging

from the late Iron Age to the middle Anglo-Saxon period. By analysing shared rare variants

with hundreds of modern samples from Britain and Europe, we estimate that on average the

contemporary East English population derives 38% of its ancestry from Anglo-Saxon

migrations. We gain further insight with a new method, rarecoal, which infers population

history and identifies fine-scale genetic ancestry from rare variants. Using rarecoal we find

that the Anglo-Saxon samples are closely related to modern Dutch and Danish populations,

while the Iron Age samples share ancestors with multiple Northern European populations

including Britain.
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W
ithin the last 2,000 years alone, the British Isles have
received multiple well-documented immigrations.
These include military invasions and settlement by

the Romans in the first century CE, peoples from the North Sea
coast of Europe collectively known as the Anglo-Saxons between
ca. 400 and 650 CE (Fig. 1a), Scandinavians during the late Saxon
‘Viking period’ 800–1,000 CE and the Normans in 1,066 CE
(ref. 1). These events, along with prior and subsequent population
movements, have led to a complex ancestry of the current British
population. Although there is only a slight genetic cline from
north to south at a coarse level2,3, recent analyses have revealed
considerable fine-scale genetic structure in the Northern and
Western parts of Great Britain, alongside striking homogeneity in
Southern and Eastern England4 in the regions where
archaeologists identify early Anglo-Saxon artifacts, cemeteries
and communities. A variety of estimates of the fraction of Anglo-
Saxon genetic ancestry in England have been given5–8, with the
recent fine structure analysis suggesting most likely 10–40%
(ref. 4).

However, even large-scale analyses of present-day data provide
only weak evidence of the Anglo-Saxon migration impact, mainly
for two reasons. First, estimating the impact of historical
migrations from present-day genetic data alone is challenging,
because both the state of the indigenous population before the
migration as well as the genetic make up of the immigrants are
unknown and have to be estimated simultaneously from present-
day data. Second, if the source population is genetically close to
the indigenous population, migrations are hard to quantify due to
the challenge in detecting small genetic differences. This is
particularly true for the case of the Anglo-Saxon migrations in
Britain, given the close genetic relationships across Europe9,10.

Here we address both of these challenges using ancient DNA
and new methodology. We present whole-genome sequences of
10 ancient samples from archaeological excavations in East

England, which date to the late Iron Age and to the early and
middle Anglo-Saxon periods and hence let us directly observe
and quantify the genetic impact of the Anglo-Saxon migrations in
England. Furthermore, we develop new methodology based on
rare genetic variation in hundreds of modern samples to detect
subtle genetic differentiation between immigrant and indigenous
ancestry. We estimate that the modern-day East English
population derives on average 38% of its ancestry from Anglo-
Saxon migrants. We give evidence for mixing of migrants and
natives in the early Anglo-Saxon period, and we show that the
Anglo-Saxon migrants studied here have close ancestry to
modern-day Dutch and Danish populations.

Results
Samples and sequencing. We generated genome sequences for 10
samples that were collected from three sites in East England close
to Cambridge: Hinxton (five samples, Supplementary Fig. 1),
Oakington (four samples, Supplementary Fig. 2) and Linton
(1 sample), which were selected from a total of 23 screened
samples based on DNA preservation (Fig. 1b, Table 1,
Supplementary Table 1, Supplementary Note 1). All sequenced
samples were radiocarbon dated (Supplementary Table 2), and
fall into three time periods: the Linton sample and two Hinxton
samples are from the late Iron Age (B100 BCE), the four samples
from Oakington from the early Anglo-Saxon period (fifth to
sixth century), and three Hinxton samples from the middle
Anglo-Saxon period (seventh to ninth century; Fig. 1c). The two
Iron Age samples from Hinxton are male, all other samples are
female, based on Y chromosome coverage and consistent with the
archaeology. All samples were sequenced to genome-wide
coverage from 1x to 12x (Table 1). All have contamination rates
below 2%, as estimated both from mitochondrial DNA and from
nuclear DNA (Supplementary Table 3, Supplementary Note 2).
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Figure 1 | Geographic and temporal context of the samples used in this study. (a) Anglo-Saxon migration routes of people from the continental coast, as

reconstructed from historical and archaeological sources. (b) The ancient samples used in this study were excavated at three archaeological sites in East

England: Hinxton, Oakington and Linton. The towns Cambridge and Saffron Walden are also shown (black circles). Background green/brown shades
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Linton and two samples from Hinxton are from the late Iron Age, the four Oakington samples from the early Anglo-Saxon period and three Hinxton samples

are from the middle Anglo-Saxon period.
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Mitochondrial and Y chromosome haplogroups of all samples are
among the most common haplogroups in present-day North-
Western Europe (Table 1)11,12 and in this case not informative
for distinguishing immigrant versus indigenous ancestry.

We generated a principal component plot of the 10 ancient
samples together with relevant European populations selected
from published data13,14 (Supplementary Fig. 3). The ancient
samples fall within the range of modern English and Scottish
samples, with the Iron Age samples from Hinxton and Linton
falling closer to modern English and French samples, whereas
most Anglo-Saxon era samples are closer to modern Scottish and
Norwegian samples. Overall, though, population genetic
differences between these samples at common alleles are small.

Estimating the Anglo-Saxon component in modern Britain.
While principal component analysis can reveal relatively old
population structure, such as generated from long-term isolation-
by-distance models15, whole-genome sequences let us study rare
variants to gain insight into more recent population structure. We
identified rare variants with allele frequency up to 1% in a
reference panel of 433 European individuals from modern
Finland, Spain, Italy, Netherlands and Denmark, for which
genome-wide sequence data are available16–18. We determined
for each ancient sample the number of rare variants shared with
each reference population (Supplementary Note 3). There are
striking differences in the sharing patterns of the samples,
illustrated by the ratio of the number of rare alleles shared with
Dutch individuals to the number shared with Spanish individuals
(Fig. 2a). The middle Anglo-Saxon samples from Hinxton
(HS1, HS2 and HS3) share relatively more rare variants with
modern Dutch than the Iron Age samples from Hinxton
(HI1 and HI2) and Linton (L). The early Anglo-Saxon samples
from Oakington are more diverse with O1 and O2 being closer to
the middle Anglo-Saxon samples, O4 exhibiting the same pattern
as the Iron Age samples, and O3 showing an intermediate level of
allele sharing, suggesting mixed ancestry. The differences between
the samples are highest in low-frequency alleles and decrease with
increasing allele frequency. This is consistent with mutations of
lower frequency on average being younger, reflecting more recent
distinct ancestry, compared with higher frequency mutations
reflecting older shared ancestry.

We also examined using the same method 30 modern samples
from the UK10K project19, 10 each with birthplaces in East
England, Wales and Scotland. Overall, these samples are closer to
the Iron Age samples than to the Anglo-Saxon era samples
(Fig. 2a). There is a small but significant difference between the
mean values in the three modern British sample groups, with East
English samples sharing slightly more alleles with the Dutch, and
Scottish samples looking more like the Iron Age samples.

To quantify the ancestry fractions, we fit the modern British
samples with a mixture model of ancient components, by placing
all the samples on a linear axis of relative Dutch allele sharing that
integrates data from allele counts 1–5 (Fig. 2b, Supplementary
Note 3). By this measure the East England samples are consistent
with 38% Anglo-Saxon ancestry on average, with a large spread
from 25 to 50%, and the Welsh and Scottish samples are
consistent with 30% Anglo-Saxon ancestry on average, again with
a large spread (Supplementary Table 4). These numbers are lower
on average if we exclude the low-coverage individual HS3 from
the Anglo-Saxon group (35% for East English samples). A similar
result is obtained when we analyse modern British samples from
the 1,000 Genomes Project, which exhibit a strong substructure
(Supplementary Note 4, Supplementary Fig. 4). We find that
samples from Kent show a similar Anglo-Saxon component of
37% when compared against Finnish and Spanish outgroups, with
a lower value for samples from Cornwall (Supplementary Fig. 5a,
Supplementary Table 4).

An alternative and potentially more direct approach to
estimate these fractions is to measure rare allele sharing directly
between the modern British and the ancient samples. While being
much noisier than the analysis using Dutch and Spanish
outgroups, this yields consistent results (Supplementary Fig. 5b,
Supplementary Note 3). In summary, this analysis suggests that
on average 25–40% of the ancestry of modern Britons was
contributed by Anglo-Saxon immigrants, with the higher number
in East England closer to the immigrant source. The difference
between groups within Britain is surprisingly small compared
with the large differences seen in the ancient samples. This is true
for both the UK10K samples and for the British samples from the
1,000 Genomes project, although we note that the UK10K sample
locations may not fully reflect historical geographical population
structure because of recent population mixing.

One caveat of our analysis is that we are using the three Iron
Age samples from Cambridgeshire as proxies for the indigenous
British population, which no doubt was structured, though it
seems reasonable to take these as representatives at least for
Eastern England. Furthermore, any continental genetic contribu-
tion from the Romano-British period would be factored into the
assigned Anglo-Saxon component, as would a late Anglo-Saxon
Scandinavian or Norman contribution. However these effects
would only be strong if the contribution was large and heavily
biased on the Dutch–Spanish axis.

Building a population history model from rare variants. To get
further insight into the history underlying these sharing patterns,
we developed a sensitive new method, rarecoal, which fits a
demographic model to the joint distribution of rare alleles in a
large number of samples (Supplementary Notes 5 and 6). Our

Table 1 | A summary of all sequenced samples in this study.

Name Origin Sex C14 Date (calibrated) Endogenous (%) Unique (%) MT and Y haplogroup Mean autosomal coverage

L Linton Female 360–50 BCE 72 54 H1e 1.4
HI1 Hinxton Male 160 BCE–26 CE 16 63 K1a1b1b, R1b1a2a1a2c 1.3
HI2 Hinxton Male 170 BCE–80 CE 83 65 H1ag1, R1b1a2a1a2c1 11.8
O1 Oakington Female 420–570 CE 81 50 U5a2a1 3.8
O2 Oakington Female 385–535 CE 92 68 H1g1 2.7
O3 Oakington Female 395–540 CE 95 64 T2a1a 8.2
O4 Oakington Female 400–545 CE 67 77 H1at1 6.3
HS1 Hinxton Female 666–770 CE 36 91 H2a2b1 4.4
HS2 Hinxton Female 631–776 CE 42 74 K1a4a1a2b 3.8
HS3 Hinxton Female 690–881 CE 16 71 H2a2a1 0.9

The ‘% endogenous’ values give the percentage of sequenced DNA that map to the human reference genome. The ‘% unique’ values give the fraction of mapped reads that are left when excluding
duplicates. The ‘mean autosomal coverage’ is the number of reads covering a base, averaged across chromosome 20. C14 Dates are calibrated, with 95% confidence intervals given.
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strategy is to build a model in the form of a population phylogeny
of the relationship between modern European populations, into
which we can place the ancient samples. We recognize that a
model without admixture and post-split gene flow is inadequate
as a complete description of European population history.
However, this is a natural simplified model, and the focus in this
study is on understanding the genetic relationships of immigrants
and indigenous populations in England, for which this population
phylogeny model provides a reasonable scaffold.

The key idea is to model explicitly the uncertainty in the past of
the distribution of derived alleles, but approximate the corre-
sponding distribution for non-derived alleles by its expectation
(Fig. 3a). Because rarecoal explicitly models rare mutations, it
estimates separations in mutation clock time rather than genetic
drift time, in contrast to methods based on allele frequency
changes in common variants20. We first tested rarecoal on
simulated data and found that it was able to reconstruct split
times and branch population sizes with good accuracy (Fig. 3b),
matching allele sharing almost exactly (Supplementary Fig. 6).
We also tested its robustness with a smaller sample size in only
one population (as in the Danish samples studied here), and
under admixture (Supplementary Note 5, Supplementary Fig. 7).

We next applied rarecoal to 524 samples from six populations
in Europe (Fig. 3c,d) to estimate a European demographic tree
into which we could place the ancient samples. Because the
British samples in the 1,000 Genomes Project fall into three
distinct clusters, reflecting three sample locations (from Kent,

Cornwall and the Orkney Islands, as part of the Peoples of the
British Isles project4,21, Supplementary Note 4)16, we fitted
different trees to these different groups (Supplementary Fig. 8).
The common feature in all three trees is a first split between
Southern and Northern Europe with a median time B7,000 years
ago, followed by three more separations close in time B5,000
years ago between Netherlands, Denmark, Finland and Britain.
Interestingly, when using the British samples from Cornwall, we
obtained a tree where Cornwall forms an outgroup to the Dutch,
Danish and Finnish population (Fig. 3c). In contrast, when we use
Kent, it forms a clade with the Dutch population (Fig. 3d),
consistent with higher Anglo-Saxon ancestry in the South of
England than in Cornwall. When we use the Orkney population
as the British branch, we find a similar tree topology as the one
for Cornwall. These results show that both Cornwall and Orkney
are more distantly related to continental Europe than Kent is.
The tip branch effective population size is lowest in Finland
(B12,000), consistent with previous observations22,23, and
highest in Kent (B191,000) and in the Netherlands
(B184,000). For the European data, the allele sharing fit is
worse than for the simulated data (Supplementary Fig. 9),
presumably due to simplifying model assumptions of a constant
population size in each branch and the absence of migration.

The relatively recent estimate for the split time between Italy
and Spain, B2,600 years ago, may be a consequence of migration
following an earlier separation; the population size of the Italian-
Spanish ancestral population was estimated to be extremely large
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and an upper bound could not be determined, which could be an
artifact of ancestral substructure or admixture. Another explana-
tion would be a common source of admixture into both the
Spanish and the Italian population, resulting in relatively recent
common ancestry. We show in Supplementary Fig. 7 how
admixture can modify rarecoal estimates of effective population
size estimates and split times.

Modelling ancestry of ancient genomes using rarecoal. In
addition to reconstructing the broader European relationship
from a large sample set, rarecoal can be used to evaluate the
relationship of a single ancient sample with the European tree. To
do this, we assume a model in which the ancestral population of
the single sample merges with the European tree at a particular
branch at a particular time before the date of origin of the sample.
We can then use rarecoal to evaluate the likelihood of the joint
allele sharing data between the ancient sample and the modern
populations under each model, specified by the branch and merge
time in the tree (Fig. 4, Supplementary Note 5). There was a
marked difference between the Iron Age and the Anglo-Saxon era
samples: the Anglo-Saxon era samples mostly merged onto the
Dutch and Danish branches, whereas the Iron Age samples
preferentially merged at the base of the ancestral branch for all
modern Northern European samples. The exception is that the
early Anglo-Saxon O4 shows the same signal as the Iron Age
samples, consistent with the rare allele sharing analysis (Fig. 2).
For sample O3, which appeared to be of mixed ancestry in the
allele sharing analysis, we find highest likelihood for merging with

the Danish branch. However, in this sample there is also a notably
higher likelihood to merge onto the same Northern European
ancestral branch point as seen for the Iron Age samples. This is
consistent with O3 being of recently mixed indigenous and
Anglo-Saxon origin, although we can not rule out more complex
scenarios involving prior mixed ancestry of this individual during
the Romano-British period. There is some differentiation
amongst the Anglo-Saxon era samples with samples O1, O2, HS1
and HS3 having highest likelihood of merging onto the Dutch
branch while O3 and HS2 have highest likelihoods of merging
onto the Danish branch, although in some cases the difference in
likelihood between these two possibilities is small. The signals
from HS3, HI1 and L are more spread due to low coverage, but
consistent with the other results.

The mapping of the ancient samples onto the tree is similar for
the tree using Kent as British population (Supplementary Fig. 10)
and for the tree using Cornwall as the British proxy (Fig. 4). In
particular, the Iron Age samples map onto the ancestral branch of
Northern European populations irrespective of using Kent or
Cornwall as British proxy. This suggests that none of the present-
day populations in our data set, including the population from
Cornwall, are as closely related to the Iron Age samples as
Denmark and the Netherlands are to the Anglo-Saxon samples.

We validated our approach of mapping individual samples into
a tree by placing modern samples onto the same tree as in Fig. 4.
We find all samples from populations used in building the tree
placed on the tip of their respective branch as expected
(Supplementary Fig. 11). When mapping samples from groups
not present in the tree, as is the case for samples from Kent and
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Orkney, we find that they map onto the same ancestral location as
the Iron Age samples (Supplementary Fig. 11), confirming that
they are of distinct ancestry from the Cornish population and
other populations used in building the tree, similarly to the Iron
Age samples. As detailed in Supplementary Note 5, our mapping
approach crucially depends on an appropriate model for the
reference populations. When using the Kent population for
building the tree (Fig. 3c), we find that mapping British samples
becomes worse (Supplementary Fig. 12), arguably because the
Kent population is less genetically defined and more admixed
than the group from Cornwall. In such cases we need to model
population phylogenies with admixture and gene flow, and
further development on rarecoal will enable us to study these
more complex scenarios.

Discussion
This study combines large modern sample sets with ancient
genomes in a novel way, based on rare allele sharing. On the one
hand, the power of rare genetic variants clearly shows the value in
whole-genome sequencing of ancient DNA: While SNP capture
technology provides a far more economical way to obtain
genome-wide data from ancient DNA (ref. 14), it cannot detect

rare genetic variants, which as we have shown are necessary to
analyse subtle genetic differences between closely related
populations. On the other hand, our analysis shows the value
of having whole-genome sequence for a large number of modern
samples to ascertain rare variants, which fortunately is
increasingly becoming the standard for large population scale
genetic studies16–19.

Our analysis of early and middle Anglo-Saxon samples from
East England adds significantly to our picture of the Anglo-Saxon
period in Britain. In the cemetery at Oakington we see evidence
even in the early Anglo-Saxon period for a genetically mixed but
culturally Anglo-Saxon community24,25, in contrast to claims for
strong segregation between newcomers and indigenous peoples7.
The genomes of two sequenced individuals (O1 and O2) are
consistent with them being of recent immigrant origin, from a
source population close to modern Dutch, one was genetically
similar to native Iron Age samples (O4), and the fourth was
consistent with being an admixed individual (O3), indicating
interbreeding. Despite this, their graves were conspicuously
similar, with all four individuals buried in flexed position, and
with similar grave furnishing. Interestingly the wealthiest grave,
with a large cruciform brooch, belonged to the individual of
native British ancestry (O4), and the individual without grave
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goods was one of the two genetically ‘foreign’ ones (O2), an
observation consistent with isotope analysis at West Heslerton
which suggests that new immigrants were frequently poorer26,27.

Up to this point we have interpreted the genetic structure of
the Anglo-Saxon samples in terms of recent immigrant versus
indigenous populations. However, in the absence of a time series
through the Romano-British period from the Iron Age to the
Anglo-Saxon period, we should also consider the possibility that
some of the genetic heterogeneity seen in the Oakington samples
arose earlier due to immigration in Romano-British times. We
recall that sample O4 lies genetically almost centrally in the Iron
Age samples, and O1 and O2 are very close to the later Middle
Saxon samples from Hinxton and modern Dutch. For Roman
immigration patterns to generate this diverse structure in the fifth
to sixth century Oakington samples, one would have to assume
strong social segregation with little interbreeding over multiple
generations. This seems unlikely given that immigration into
Roman-Britain was geographically diverse and consisted of an
administrative elite28 and the military, who would have interbred
and recruited locally, particularly in the last decades of the third
and fourth centuries29. Furthermore, there is no significant
Roman settlement at Oakington and no evidence for significant
Roman Heritage30.

Given the mixing apparent B500 CE, and that the modern
population is not more than 40% of Anglo-Saxon ancestry, it is
perhaps surprising that the middle Anglo-Saxon individuals from
the more dispersed field cemetery in Hinxton look more
genetically consistent with unmixed immigrant ancestry. One
possibility is that this reflects continued immigration until at least
the Middle Saxon period. The unmixed Hinxton group, versus
the mixing of the Oakington population, shows that early
medieval migration took a variety of forms and that these
migrants integrated with the incumbent population in different
ways. Full-genome sequences, and new methods such as rarecoal,
now allow us to use slight distinctions in genetic ancestry to study
such recent events. Further ancient genomes, and methodological
improvements to incorporate explicit migration and mixing, will
enable us to resolve them in more detail.

Methods
Custom software mentioned here is publically available on www.github.com/
stschiff/sequenceTools and www.github.com/stschiff/rarecoal.

DNA extraction. Samples were first treated with UV-light (260 nm) for 20–30min,
and the surface was cleaned with bleach (3.5%) and isopropanol. The sample
surface was mechanically removed using a Dremel drill and disposable abrasive
discs. Samples were ground to fine powder using a Mikrodismembrator (Sartorius)
and stored at 4�C until further use. DNA was extracted in clean room facilities in
Adelaide using an in-solution silica-based protocol31.

Library preparation. Libraries were generated from the Hinxton individuals
(n¼ 6) with32 and without enzymatic damage repair (Supplementary Table 1),
whereas partial damage repair33 was performed for the Linton (n¼ 3) and
Oakington (n¼ 14) samples. All 29 libraries were prepared with truncated
barcoded Illumina adaptors and amplified with full-length indexed adaptors for
sequencing34. Protocols evolved over the course of the study with regards to the
final library amplification steps. Hinxton DNA libraries were amplified by PCR in
quintuplicates for an initial 13 cycles (AmpliTaq Gold, Life Technologies), followed
by pooling and purification of the PCR replicates with the Agencourt AMPure XP
system. DNA libraries were then re-amplified for another 13 cycles in
quintuplicates or sextuplicates, followed by pooling and purification, visual
inspection on a 3.5% agarose gel, and final quantification using a NanoDrop 2000c
spectrophotometer (FisherScientific). The Oakington and Linton DNA libraries
were amplified using isothermal amplifications using the commercial TwistAmp
Basic kit (TwistDx Ltd). The amplification followed the manufacturer’s
recommendations and used 13.4 ml of libraries after the Bst fill-in step, and an
incubation time of the isothermal reaction of 40min at 37 �C, followed by gel
electrophoresis and quantification using a Nanodrop spectrophotometer. Following
quantification, libraries were re-amplified for seven cycles using full-length 7-mer

indexed Illumina primers as described34, followed by purification with Ampure
and quantification using a TapeStation (Agilent).

Library screening. The 23 libraries treated with damage repair were screened for
complexity and endogenous DNA on an Illumina MiSeq platform in Harvard in
collaboration with David Reich (Supplementary Table 1). When the project started,
we had available only the samples from Hinxton, and since all of them had high
complexity and high amounts of endogenous DNA (except 12882A, which did not
pass screening), we selected all five samples for deep sequencing. We then
expanded the project to the other two sites, from which we screened many more
samples than we could sequence deeply, so we selected the best four samples (with
highest complexity and endogenous DNA) from Oakington and the best from
Linton (from which we had fewer samples, and there was only one sample with
acceptable complexity for deep sequencing).

Deep sequencing. We first sequenced the five DNA libraries generated from the
Hinxton samples in two batches. The first batch consisted of 10 lanes of 75 bp
paired end sequencing on an Illumina HiSeq 2500 platform, run in rapid mode. All
five samples were multiplexed in this batch. The resulting data was processed (see
below) and used to estimate complexity and endogenous DNA to decide further
sequencing. The second batch consisted of 42 lanes with similar settings as the first
batch, but not multiplexed. Based on the complexity and endogenous DNA esti-
mates, we sequenced sample HI1 and HS3 on 4 lanes each, samples HS1 and HS2
on 8 lanes each and sample HI2 on 16 lanes. In the second batch, we introduced
five dark cycles into read 1 to avoid low-complexity issues due to the clean room
tags in the library preparation. We also included 5% Phi X sequences to increase
the complexity of the first five base pairs of read 2, a common procedure for
low-complexity libraries. In case of the samples from Oakington and Linton, we
used the protocol used in batch 2 of the Hinxton samples (including dark cycles).
We sequenced samples O2 and L on 4 lanes each, sample O4 on 6 lanes, sample O1
on 8 lanes and sample O3 on 10 lanes.

Raw read processing. We filtered out all read pairs that did not carry the correct
clean room tags in the first five base pairs of read 2. In case of batch 1 of the
Hinxton samples, we also sequenced the clean room tag on read 1, which we also
filtered on in these cases. As a second step, we merged all reads searching for a
perfect or near perfect overlap allowing at most 1 mismatch between read 1 and the
reverse complement of read 2. The merging also took advantage of the fact that we
typically had fragments of length 50 pb, which means that many of the 75 bp reads
contained the reverse complement of the clean room tag of the other read,
and the Illumina adaptors. As a last step, we removed the clean room tags and
the adaptors from both ends of the merged reads. Both merging and adaptor
trimming was done using a custom programme called filterTrimFastq, available
on http://www.github.com/stschiff/sequenceTools.

Alignment. After merging, we ended up with single reads with variable length
(on average about 50 bp) for each sample. We aligned those single reads with the
programme ‘bwa aln’35 to the human reference, version GRCh37 using the
parameter ‘-l 1024’ to turn-off seeding36. The alignment was done on a per-lane
basis, all alignments were then sorted using ‘samtools sort’. For each individual, we
then merged the sorted alignments into a single bam file per individual, using
‘samtools merge’. We then removed duplicate reads in each alignments using our
custom python script ‘samMarkDuplicates.py’, available also on github. The script
checks whether neighbouring reads in the sorted alignments are equal, and
removes all but one read if it finds duplicates. Finally, we removed all unmapped
reads from the alignments. Despite enzymatic damage repair, some low levels of
DNA damage can still be found in the libraries. We used the programme
‘mapdamage2’ (ref. 37) to measure DNA degradation. For each individual, we first
ran mapDamage on chromosome 20 to estimate the degradation profile. For all
individuals, the DNA damage profile was found to have an excess of C-4T
changes at the 50 end of reads, as expected for ancient DNA, and an excess of
G-4A changes was found at the 30 end. However, because the sequencing libraries
were treated with UDG, which removes damaged sites in reads, the excess was
much lower than in comparable studies without UDG treatment37.

Mitochondrial and Y chromosome analysis. We called mtDNA and
Y chromosome consensus sequences using samtools. Haplogroups were
handcurated using public databases (Supplementary Note 2).

Contamination estimates. We estimated possible modern DNA contamination in
all ancient samples using two methods. First, we tested for evidence for conta-
minant mitochondrial DNA38. We looked for sites in the mitochondrial genome, at
which the ancient sample carried a consensus allele that was rare in the 1,000
Genomes reference panel. We then looked whether there were reads at these sites
that carried the majority allele from 1,000 Genomes (Supplementary Note 2).
Second, we used the programme ‘verifyBamId’39 to carry out a similar test in the
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nuclear genome, again using the 1,000 Genomes reference panel. Contamination
estimates are summarized in Supplementary Table 3.

Principal component analysis. We downloaded the Human Origins Data set13,14

and called genotypes at all sites in this data set for all ancient samples using a
similar calling method as described in ref. 14: Of all high-quality reads covering a
site, we picked the allele that is supported by the majority of reads, requiring at
least two reads supporting the majority allele, otherwise we call a missing genotype.
If multiple alleles had the same number of supporting reads, we picked one at
random. Principal component analysis was performed using the ‘smartpca‘
programme from EIGENSOFT (ref. 40), by using only the modern samples for
defining the principal components and projecting the 10 ancient samples onto
these components (Supplementary Fig. 3).

Rare allele sharing analysis. We compiled a reference panel consisting of 433
individuals from Finland (n¼ 99), Spain (n¼ 107), Italy (n¼ 107), Netherlands
(n¼ 100) and Denmark (n¼ 20). The Finnish, Spanish and Italian samples are
from the 1,000 Genomes Project (phase 3)16, the Dutch samples from the GoNL
project17 and the Danish samples from the GenomeDK project18. For the Dutch
and Danish samples, only allele frequency data was available. In case of the Dutch
data set, we downsampled the full data set to obtain the equivalent of 100 samples.
All other reference sample variant calls were used as provided by the 1,000
Genomes Project. In addition, we filtered based on a mappability mask41,42 that is
available from www.github.com/stschiff/msmc. We selected all variants up to allele
count nine in this reference set and tested for each ancient individual and each of
those sites whether the ancient individual carried the rare allele. We called a rare
variant (always assumed heterozygous) in the ancient sample if at least two reads
supported the rare allele from the reference set. While this calling method will
inevitably miss variants in low coverage individuals, the relative numbers of shared
alleles with different populations is unbiased.

We accumulated the total number of alleles shared between each ancient sample
and each modern reference population, and stratified by allele count in the
reference population, up to allele count nine (Supplementary Data 1). We found
that sharing with the Dutch and the Spanish population showed the largest
variability across the ancient samples. For the plot in Fig. 2a, we divided the sharing
count with the Dutch population by the sharing count of the Spanish population
for each allele frequency. To plot curves from the Dutch and the Spanish
population itself, we sampled haploid individuals from each population by
sampling with replacement at every variant site in the reference set. This was
necessary because for the Dutch samples no genotype information was publically
available, only allele frequency data (Supplementary Note 3).

For the 30 UK10K samples shown in Fig. 2a,b, we started from the read
alignment for each individual and called rare variants with respect to the 433
reference individuals in exactly the same way as we did for the ancient samples. For
Fig. 2a, the allele sharing counts were then accumulated across the 10 individuals in
each group. Error bars for each allele sharing count are based on the square root of
each count. For Fig. 2b we added the allele sharing counts between each ancient
sample and each reference population up to allele count five, and computed the
ratio NED/(NEDþ IBS), where NED is the sharing count with Dutch, and IBS the
sharing count with Spanish (Supplementary Note 3). For the mean and variances
shown in Fig. 2b, we excluded outliers as indicated in the caption of the figure. The
fraction of Anglo-Saxon derived ancestry is computed for each modern UK10K
sample as the relative distance of its relative sharing ratio from the Iron Age mean
value compared with the Saxon era mean value, as shown in Fig. 2b, with 0%
corresponding to the Iron Age mean, and 100% corresponding to the Anglo-Saxon
era mean (Supplementary Note 3, Supplementary Table 4).

Rarecoal analysis. Rarecoal is a new framework to calculate the joint allele
frequency spectrum across multiple populations using rare alleles. Given a certain
distribution of rare derived alleles across subpopulations (here up to allele count
four), and a given number of non-derived alleles, which can be arbitrarily large, we
calculate the total probability of that configuration under a demographic model.
The model consists of a population tree with constant population sizes in each
branch of the tree and split times. To give rise to the data observed in the present,
the lineages of the derived alleles must coalesce among each other before they
coalesce to any non-derived lineage. We introduce a state space that contains all
possible configurations of derived lineages across populations and propagate a
probability distribution over this space back in time. Details and mathematical
derivations are given in Supplementary Note 6.

We implemented rarecoal in a software package (available from
www.github.com/stschiff/rarecoal) that can learn the parameters of a given
population tree topology from the data using numerical maximization of the
likelihood and subsequent Markov Chain Monte Carlo to get posterior
distributions for each split time and branch population size. We did not implement
an automated way to learn the tree topology itself, but use a step by step protocol to
learn the best topology fitting the data, adding one population at a time
(Supplementary Note 5). The outputs from rarecoal are in scaled time. To convert
to real time (years) and real population sizes, we used a per-generation mutation
rate of 1.25� 10� 8 and a generation time of 29 years.

We tested the method on simulated data using the sequential coalescent with
recombination model (SCRM) simulator43 with the model shown in Fig. 3b with
1,000 haploid samples distributed evenly across the five populations and realistic
recombination and mutation parameters. We then learned the model from the
European data set as shown in Fig. 3c using an iterative protocol, adding one
population at a time and maximizing parameters subsequently to ensure that we
are still fitting the right topology (Supplementary Note 5).

For mapping ancient samples on the tree we used the same calling method as in
the rare allele sharing analysis. We then added the ancient individual as a separate
seventh population to the European tree and evaluated the likelihood for this
external branch to merge anywhere on the tree. We restricted the fitting to alleles
that were shared with the ancient sample and excluded private variants in the
ancient sample, which have high false-positive rates. We also made sure that the
age of the ancient sample was correctly modelled into the joint seven-population
tree, by ‘freezing’ the state probabilities from the present up to the point where the
ancient sample lived.

For testing the tree-colouring method, we used single individuals from within
the reference set and used them as separate sample to be mapped onto the
European tree. (Supplementary Note 5).
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scrm 1000 1 -l 100000 -t 100000 -r 80000 100000000 -I 5 
200 200 200 200 200 -ej 0.00125 2 1 -ej 0.0025 4 3 -ej 
0.00375 5 3 -ej 0.005 3 1 -en 0.00000001 1 0.1 -en 
0.00000002 2 2.0 -en 0.00000003 3 1.0 -en 0.00000004 4 
5.0 -en 0.00000005 5 10.0 -en 0.00125001 1 1.0 -en 
0.0025001 3 0.5 -en 0.00375001 3 0.8 -en 0.005001 1 1.0 
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scrm 940 1 -l 100000 -t 100000 -r 80000 100000000 -I 5 
200 200 200 200 40 -ej 0.00125 2 1 -ej 0.0025 4 3 -ej 
0.00375 5 3 -ej 0.005 3 1 -en 0.00000001 1 0.1 -en 
0.00000002 2 2.0 -en 0.00000003 3 1.0 -en 0.00000004 4 
5.0 -en 0.00000005 5 10.0 -en 0.00125001 1 1.0 -en 
0.0025001 3 0.5 -en 0.00375001 3 0.8 -en 0.005001 1 1.0 
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scrm 600 1 -p 12 -t 100000 -r 80000 100000000 -I 3 200 
200 200 -eps 0.00125 2 3 (1-<m>) -ej 0.001875 2 1 -ej 
0.00375 3 1 -seed 1 
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Supplementary Note 6 - Rarecoal Theory

T he rarecoal coalescent framework

Rarecoal is a coalescent framework for rare alleles. We define rare alleles roughly by requiring i) the
allele count of the derived mutat ion to be small, typically not larger than 10, and ii) the total number of
samples to be much larger, say 100 or more. The idea is to provide a general approach of comput ing the
joint allele frequency spectrum for rare alleles under an arbit rary demographic model under populat ion
splits and populat ion size changes. Migrat ion and admixture will be incorporated in the future.

D efinit ions

In the following, we compute the probability to observe a pat tern of rare alleles seen across mult iple
populat ions, given a demographic model. In the simplest case, a demographic model is t ree-like and
consists of populat ion split t imes and constant populat ion sizes in each branch of the tree. T ime is
counted backwards in t ime, with t = 0 denot ing the present and t > 0 denot ing scaled t ime in the
past . We denote the scaled coalescence rate (scaled inverse populat ion size) in populat ion k at t ime t
by λk (t) = N0/ Nk (t), where Nk (t) is the populat ion size in populat ion k at t ime t, and N0 is a scaling
constant which we set to N0 = 20000 for modeling human evolut ion.

We consider a number of P subpopulat ions. We define a vector n = {nk} for k = 1. . . P summarizing
the number of sampled haplotypes in each populat ion. We also define vector m = {mk} as the set of
derived allele counts at a single site in each populat ion. As an example, consider 5 populat ions with 200
haplotypes sampled in each populat ion, and a rare allele with total allele count 3, with one derived allele
seen in populat ion 2 and 2 derived allelesseen in populat ion 3. Then wehaven = {200, 200, 200, 200, 200}
and m = {0, 1, 2, 0, 0}.

Looking back in t ime, lineages coalesce and migrate, so the numbers of ancest ral and derived alleles in
the past decrease over t ime. In theory one needs to consider a very large state space of configurat ions for
this process, with one state for each possible number of ancestral and derived lineages in each populat ion.
Here we make a major simplificat ion: While we will consider the full probability dist ribut ion over the
derived lineages, we will consider only the expected number of ancest ral alleles over t ime. Specifically,
we define the expected number of ancest ral alleles in populat ion k at t ime t as a(t) = {ak (t)}. For the
derived alleles, we define a state x = {xk} as a configurat ion of derived lineages in each populat ion. The
probability for state x at t ime t is defined by b(x, t).

Coalescence

We now consider the evolut ion of the two variables a(t) and b(x, t) through t ime under the standard
coalescent . We first int roduce a t ime discret izat ion. We define t ime points t0 = 0, . . . tT . Here, tT =
tmax should be far enough in the past to make sure that most lineages have coalesced by then with a
high probability. We choose a t ime pat terning that is linear in the beginning and crosses over to an
exponent ially increasing interval width. Specifically, the pat terning follows this equat ion, inspired by the
t ime discret izat ion in (Li and Durbin, 2011):

t i = α exp

�
i
T

log

�

1 +
tmax

α
)

��

− α. (1)

Here, T is the number of t ime intervals, and α is a parameter that controls the crossover from linear to
exponent ial scale. In pract ice, we use α = 0.01, tmax = 20 and T = 3044, which are chosen such that



the init ial step width equals one generat ion (in scaled units with N0 = 20000), and the crossover scale is
400 generat ions.

Given the number of sampled haplotypes in each populat ion nk , and the observed number of derived
alleles mk in each populat ion, we init ialize our variables as follows:

ak (t = 0) = nk − mk . (2)

for each populat ion k, and

b(x, t = 0) = 1 if xk = mk for all k = 1. . . P (3)

b(x, t = 0) = 0 otherwise (4)

Under a linear approximat ion, we can compute the value of a at a t ime point t + ∆ t , given the value
at t ime t:

ak (t + ∆ t) = ak (t)

�

1−
1
2

(ak (t) − 1)λk (t)∆ t

�

. (5)

The factor 1/ 2 corrects overcount ing: any one coalescence takes one of two lineages out , so it should be
counted half per part icipat ing lineage. We can improve this update equat ion slight ly beyond the linear
approximat ion: In the limit of ∆ t → 0, equat ion 5 forms a different ial equat ion which can be solved for
finite intervals ∆ t :

ak (t + ∆ t) =
1

1 +
�

1
ak ( t ) − 1

�
exp

�
− 1

2λk (t)∆ t
�. (6)

For the derived alleles, we need to update the full probability dist ribut ion b(x, t):

b(x , t + ∆ t) = b(x, t) exp

�

−
�

k

��
xk

2

�

λk (t) + xk ak (t)λk (t)

�

∆ t

�

+
�

l

b(x1 . . . (xl + 1) . . . xP , t)

�

1− exp

��
xl + 1

2

�

λl (t)∆ t

�� (7)

where the first term accounts for the reduct ion of the probability over t ime due to derived lineages
coalescing among themselves or coalescing with an ancestral lineage, and the second term accounts for
the increase from those two processes occurring in states with a higher number of derived lineages. In
cont rast to the equat ion for a(t), we cannot solve this as a different ial equat ion and will only use this
linear approximat ion in ∆ t .

Populat ion Spli t s

We now consider the case where a single ancestral populat ion splits into two separate groups at some
point in t ime. When modelling this in a coalescent framework, we have to look at this backward in t ime,
and thus a populat ion split is viewed as two separate populat ions that join into one ancestral populat ion
at some point in t ime. We consider a populat ion join backward in t ime from populat ion l into populat ion
k. For the non-derived lineages, this means that after the join, populat ion k contains the sum of lineages
from populat ion k and l:

a�k (t) = ak (t) + al (t) (8)

a�l (t) = 0 (9)

where the primed variable marks the variable after the event , which will then be used as the basis for
the next coalescence update.

For the derived lineages, we need to sum probabilit ies in the correct way. We first define a t ransit ion
funct ion that changes a state before the join to new states after the join:

x�= J (x), (10)

where
J ((. . . xk . . . xl . . . )) = (. . . (xk + xl ) . . . 0 . . .) (11)



We can then define the join itself as a sum over all states before the join that give rise to the same state
after the join:

b�(x�, t) =
�

x ,J (x )= x �

b(x, t) (12)

T he l ikel ihood of a configurat ion of rare al leles

Eventually we want to compute the probability for a given configurat ion (n, m) observed in the present .
This probability is equal to the probability that a) all derived lineages coalesce before any of them
coalesces to any ancest ral-allele lineage, and b) that a mutat ion occurred on the single lineage ancest ral
to all derived lineages.

We define a singleton state sk to be the state in which only xk = 1 and xl = 0 for l �= k. We
accumulate the total probability for a single derived lineage:

d(t + ∆ t) = d(t) +
�

k

b(sk )∆ t . (13)

Then the likelihood of the configurat ion under the model is

L (n, m) = µd(tmax )
P�

k= 1

�
nk

mk

�

, (14)

which is the total probability of a mutat ion occurring on a single derived lineage, t imes the number of
ways that m derived alleles can be drawn from a pool of n samples. Note that d(tmax ) depends on n, m
and the demographic parameters, which we have omit ted for brevity so far.

Paramet er est imat ion

The above framework presents a way to effi cient ly compute the probability of observing a dist ribut ion of
rare alleles, m for a large number of samples n in mult iple subpopulat ions, given a demographic model.
We can summarize the full data as a histogram of rare allele configurat ions. We denote the i th allele
configurat ion by m i and the number of t imes that this configurat ion is seen in the data by N (m i ). We
then write

L ({ N (m i )} |Θ) =
�

i

L (m i |Θ)N (m i) , (15)

where we have int roduced a meta-parameter Θ that summarizes the ent ire model specificat ion (popu-
lat ion split t imes and branch populat ion sizes), and we have made the dependency of L (eq. 14) on Θ
explicit . For brevity we have omit ted the sample sizes n. For numerical purpose, we always consider the
logarithm of this:

logL ({ N (m i )} |Θ) =
�

i

N (m i ) logL(m i |Θ). (16)

The sum in equat ion 16 comprises all possible configurat ions in the genome, in principle. In pract ice,
we only explicit ly compute it for configurat ions between allele count 1 and 4, and replace the rest of the
counts with a bulk probability:

logL ({ N (m i )} |Θ) =
�

i

I (AC(i ))N (m i ) logL(m i |Θ) + Not her logL ot her (Θ), (17)

where the indicator funct ion I (AC(i )) gives 0 if the allele count is between 1 and 4, and 0 otherwise.
The bulk count Not her simply counts up sites with either no variant or variants with allele count larger
than 4. The bulk probability is simply:

L ot her (Θ) = 1−
�

i

(1− I (AC(i ))L (m i |Θ), (18)

With a given populat ion t ree and a given histogram of allele configurat ion counts N (m i ), we im-
plemented numerical opt imizat ions over the parameters Θ to find the maximum likelihood parameters,
and MCMC to est imate the posterior dist ribut ions for all parameters given the data. We usually first
search for the maximum with the opt imizat ion method, which is much faster than MCMC, and then use
MCMC to explore the dist ribut ion around that maximum.



I mplement at ion

We implemented this method in the Haskell programming language as a program called “ rarecoal” ,
available from github at https://github.com/stschiff/rarecoal.
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