139 research outputs found

    Generalized Jacobi structures

    Get PDF
    Jacobi brackets (a generalization of standard Poisson brackets in which Leibniz's rule is replaced by a weaker condition) are extended to brackets involving an arbitrary (even) number of functions. This new structure includes, as a particular case, the recently introduced generalized Poisson structures. The linear case on simple group manifolds is also studied and non-trivial examples (different from those coming from generalized Poisson structures) of this new construction are found by using the cohomology ring of the given group.Comment: Latex2e file. 11 pages. To appear in J. Phys.

    A microsatellite marker for yellow rust resistance in wheat

    Get PDF
    Bulk segregant analysis (BSA) was used to identify molecular markers associated with yellow rust disease resistance in wheat (Triticum aestivum L.). DNAs isolated from the selected yellow rust tolerant and susceptible F-2 individuals derived from a cross between yellow rust resistant and susceptible wheat genotypes were used to established a "tolerant" and a "susceptible" DNA pool. The BSA was then performed on these DNA pools using 230 markers that were previously mapped onto the individual wheat chromosomes. One of the SSR markers (Xgwm382) located on chromosome group 2 (A, B, D genomes) was present in the resistant parent and the resistant bulk but not in the susceptible parent and the susceptible bulk, suggesting that this marker is linked to a yellow rust resistance gene. The presence of Xgwm382 was also tested in 108 additional wheat genotypes differing in yellow rust resistance. This analysis showed that 81% of the wheat genotypes known to be yellow rust resistant had the Xgwm382 marker, further suggesting that the presence of this marker correlates with yellow rust resistance in diverse wheat germplasm. Therefore, Xgwm382 could be useful for marker assisted selection of yellow rust resistances genotypes in wheat breeding programs

    SSR and AFLP based genetic diversity of soybean germplasm differing in photoperiod sensitivity

    Get PDF
    Forty-four soybean genotypes with different photoperiod response were selected after screening of 1000 soybean accessions under artificial condition and were profiled using 40 SSR and 5 AFLP primer pairs. The average polymorphism information content (PIC) for SSR and AFLP marker systems was 0.507 and 0.120, respectively. Clustering of genotypes was done using UPGMA method for SSR and AFLP and correlation was 0.337 and 0.504, respectively. Mantel's correlation coefficients between Jaccard's similarity coefficient and the cophenetic values were fairly high in both the marker systems (SSR = 0.924; AFLP = 0.958) indicating very good fit for the clustering pattern. UPGMA based cluster analysis classified soybean genotypes into four major groups with fairly moderate bootstrap support. These major clusters corresponded with the photoperiod response and place of origin. The results indicate that the photoperiod insensitive genotypes, 11/2/1939 (EC 325097) and MACS 330 would be better choice for broadening the genetic base of soybean for this trait

    Meeting the Challenges Facing Wheat Production The Strategic Research Agenda of the Global Wheat Initiative

    Get PDF
    Wheat occupies a special role in global food security since, in addition to providing 20% of our carbohydrates and protein, almost 25% of the global production is traded internationally. The importance of wheat for food security was recognised by the Chief Agricultural Scientists of the G20 group of countries when they endorsed the establishment of the Wheat Initiative in 2011. The Wheat Initiative was tasked with supporting the wheat research community by facilitating col-laboration, information and resource sharing and helping to build the capacity to address chal-lenges facing production in an increasingly variable environment. Many countries invest in wheat research. Innovations in wheat breeding and agronomy have delivered enormous gains over the past few decades, with the average global yield increasing from just over 1 tonne per hectare in the early 1960s to around 3.5 tonnes in the past decade. These gains are threatened by climate change, the rapidly rising financial and environmental costs of fertilizer, and pesticides, combined with declines in water availability for irrigation in many regions. The international wheat research community has worked to identify major opportunities to help ensure that global wheat pro-duction can meet demand. The outcomes of these discussions are presented in this paper

    Dynamic modelling of ammonia biofiltration from waste gases

    Get PDF
    A dynamic model to describe ammonia removal in a gas-phase biofilter was developed. The math-ematical model is based on discretized mass balances and detailed nitrification kinetics that includeinhibitory effects caused by free ammonia (FA) and free nitrous acid (FNA). The model was able to pre-dict experimental results operation under different loading rates (from 3.2 to 13.2 g NH3h-1m-3). In par-ticular the model was capable of reproducing inhibition caused by high inlet ammonia concentrations. Alsoelimination capacity was accurately predicted. Experimental data was also used to optimize certain modelparameters such as the concentration of ammonia- and nitrite-oxidizing biomass.Peer ReviewedPostprint (published version

    SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species

    Get PDF
    A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42) has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources

    Identification of simple sequence repeat markers for sweetpotato weevil resistance

    Get PDF
    The development of sweetpotato [Ipomoea batatas (L.) Lam] germplasm with resistance to sweetpotato weevil (SPW) requires an understanding of the biochemical and genetic mechanisms of resistance to optimize crop resistance. The African sweetpotato landrace, ‘New Kawogo’, was reported to be moderately resistant to two species of SPW, Cylas puncticollis and Cylas brunneus. Resistance has been associated with the presence of hydroxycinnamic acids esters (HCAs), but the underlying genetic basis remains unknown. To determine the genetic basis of this resistance, a bi-parental sweetpotato population from a cross between the moderately resistant, white-fleshed ‘New Kawogo’ and the highly susceptible, orange-fleshed North American variety ‘Beauregard’ was evaluated for SPW resistance and genotyped with simple sequence repeat (SSR) markers to identify weevil resistance loci. SPW resistance was measured on the basis of field storage root SPW damage severity and total HCA ester concentrations. Moderate broad sense heritability (H2 = 0.49) was observed for weevil resistance in the population. Mean genotype SPW severity scores ranged from 1.0 to 9.0 and 25 progeny exhibited transgressive segregation for SPW resistance. Mean genotype total HCA ester concentrations were significantly different (P < 0.0001). A weak but significant correlation (r = 0.103, P = 0.015) was observed between total HCA ester concentration and SPW severity. A total of five and seven SSR markers were associated with field SPW severity and total HCA ester concentration, respectively. Markers IBS11, IbE5 and IbJ544b showed significant association with both field and HCA-based resistance, representing potential markers for the development of SPW resistant sweetpotato cultivars
    corecore