143 research outputs found

    Computer Assisted Nautical Chart Updating A Chilean Navy Hydrographic and Oceanographic Service Project

    Get PDF
    The purpose of this paper is to share with the international hydrographic community, in particular with the Hydrographic Services of the International Hydrographic Organization (IHO), how the Chilean Navy Hydrographic and Oceanographic Service (SHOA) has developed a solution, -applying computer and graphics technology- to the old and continuing problem of updating the nautical charts stored in the chart depot. Before putting into service the present project, the updating was done by manually applying the corrections published every fifteen days in the Bulletin of Notices to Mariners

    On the Effect of Thermodynamic Equilibrium on the Assembly Efficiency of Complex Multi-Layered Virus-Like Particles (VLP): the Case of Rotavirus VLP

    Get PDF
    Previous studies have reported the production of malformed virus-like-particles (VLP) in recombinant host systems. Here we computationally investigate the case of a large triple-layered rotavirus VLP (RLP). In vitro assembly, disassembly and reassembly data provides strong evidence of microscopic reversibility of RLP assembly. Light scattering experimental data also evidences a slow and reversible assembly untypical of kinetic traps, thus further strengthening the fidelity of a thermodynamically controlled assembly. In silico analysis further reveals that under favourable conditions particles distribution is dominated by structural subunits and completely built icosahedra, while other intermediates are present only at residual concentrations. Except for harshly unfavourable conditions, assembly yield is maximised when proteins are provided in the same VLP protein mass composition. The assembly yield decreases abruptly due to thermodynamic equilibrium when the VLP protein mass composition is not obeyed. The latter effect is more pronounced the higher the Gibbs free energy of subunit association is and the more complex the particle is. Overall this study shows that the correct formation of complex multi-layered VLPs is restricted to a narrow range of association energies and protein concentrations, thus the choice of the host system is critical for successful assembly. Likewise, the dynamic control of intracellular protein expression rates becomes very important to minimize wasted proteins

    Molecular characterization of the VP1, VP2, VP4, VP6, NSP1 and NSP2 genes of bovine group B rotaviruses: identification of a novel VP4 genotype

    Get PDF
    Studies on bovine group B rotaviruses (GBRs) are limited. To date, only the VP6 gene of a single bovine GBR strain and the VP7 and NSP5 genes of a few bovine GBR strains have been sequenced and analyzed. In the present study, using a single-primer amplification method, we have determined the full-length nucleotide sequences of the VP1, VP2, VP4, VP6, NSP1 and NSP2 genes of three bovine GBR strains from eastern India. In all six of these genes, the bovine GBR strains shared high genetic relatedness among themselves but exhibited high genetic diversity with cognate genes of human, murine and ovine GBRs. Interestingly, as with group A rotaviruses, the bovine GBR VP1, VP2, VP6 and NSP2 genes appeared to be more conserved than the VP4 and NSP1 genes among strains of different species. The present study provides important insights into the genetic makeup and diversity of bovine GBRs, and also identifies a novel GBR VP4 genotype

    Distribution of conserved and specific epitopes on the VP8 subunit of rotavirus VP4.

    No full text
    Three cDNA clones comprising the VP8 subunit of the VP4 of human rotavirus strain KU (VP7 serotype G1; VP4 serotype P1A) G1 were constructed. The corresponding encoded peptides were designated according to their locations in the VP8 subunit as A (amino acids 1 to 102), B (amino acids 84 to 180), and C (amino acids 150 to 246 plus amino acids 247 to 251 from VP5). In addition, cDNA clones encoding peptide B of the VP8 subunit of the VP4 gene from human rotavirus strains DS-1 (G2; P1B) and 1076 (G2; P2) were also constructed. These DNA fragments were inserted into plasmid pGEMEX-1 and expressed in Escherichia coli. Western immunoblot analysis using antisera to rotavirus strains KU (P1A), Wa (P1A), DS-1 (P1B), 1076 (P2), and M37 (P2) demonstrated that peptides A and C cross-reacted with heterotypic human rotavirus VP4 antisera, suggesting that these two peptides represent conserved epitopes in the VP8 subunit. In contrast, peptide B appears to be involved in the VP4 serotype and subtype specificities, because it reacted only with the corresponding serotype- and subtype-specific antiserum. Antiserum raised against peptide A, B, or C of strain KU contained a lower level of neutralizing activity than did that induced by the entire VP8 subunit. In addition, the serotype-specific neutralizing activity of anti-KU VP8 serum was ablated after adsorption with the KU VP8 protein but not with a mixture of peptides A, B, and C of strain KU, suggesting that most of the serotype-specific epitopes in the VP8 subunit are conformational and are dependent on the entire amino acid sequence of VP8
    corecore