40 research outputs found

    Acylsucrose-Producing Tomato Plants Forces Bemisia tabaci to Shift Its Preferred Settling and Feeding Site

    Get PDF
    [Background] The whitefly Bemisia tabaci (Genn.) causes dramatic damage to plants by transmitting yield-limiting virus diseases. Previous studies proved that the tomato breeding line ABL 14-8 was resistant to B. tabaci, the vector of tomato yellow leaf curl disease (TYLCD). This resistance is based on the presence of type IV glandular trichomes and acylsucrose production. These trichomes deter settling and probing of B. tabaci in ABL 14-8, which reduces primary and secondary spread of TYLCD.[Methodology/Principal Findings] Whitefly settlement preference was evaluated on the adaxial and abaxial leaf surfaces of nearly-isogenic tomato lines with and without B. tabaci-resistance traits, 'ABL 14-8 and Moneymaker' respectively, under non-choice and free-choice conditions. In addition, the Electrical Penetration Graph technique was used to study probing and feeding activities of B. tabaci on the adaxial and abaxial leaf surfaces of the same genotypes. B. tabaci preferred to settle on the abaxial than on the adaxial surface of 'Moneymaker' leaves, whereas no such preference was observed on ABL 14-8 tomato plants at the ten-leaf growth stage. Furthermore, B. tabaci preferred to feed on the abaxial than on the adaxial leaf surface of 'Moneymarker' susceptible tomato plants as shown by a higher number of sustained phloem feeding ingestion events and a shorter time to reach the phloem. However, B. tabaci standard probing and feeding behavior patterns were altered in ABL 14-8 plants and whiteflies were unable to feed from the phloem and spent more time in non-probing activities when exposed to the abaxial leaf surface.[Conclusions/Significance] The distorted behavior of B. tabaci on ABL 14-8 protects tomato plants from the transmission of phloem-restricted viruses such as Tomato yellow leaf curl virus (TYLCV), and forces whiteflies to feed on the adaxial side of leaves where they feed less efficiently and become more vulnerable to natural enemies. Š 2012 Rodriguez-Lopez et al.Ministerio de Ciencia e Innovación Spain (co-financed by FEDER) projects: AGL2007-66760-C02-02/AGR, AGL2007-66399-CO3-02/AGR, and AGL2010-22287-C02-01/AGR, AGL2010-22287-C02-01/AGR Consejería de Innovación y Ciencia, Junta de Andalucía, Spain (co-financed by FEDER-FSE) projects: AGR-214 and AGR-129Peer Reviewe

    45S rDNA external transcribed spacer organization reveals new phylogenetic relationships in Avena genus

    Get PDF
    Research ArticleThe genus Avena comprises four distinct genomes organized in diploid (AA or CC), tetraploid (AABB or AACC) and hexaploid species (AACCDD), constituting an interesting model for phylogenetic analysis. The aim of this work was to characterize 45S rDNA intergenic spacer (IGS) variability in distinct species representative of Avena genome diversityÂąA. strigosa (AA), A. ventricosa (CvCv), A. eriantha (CpCp), A. barbata (AABB), A. murphyi (AACC), A. sativa (AACCDD) and A. sterilis (AACCDD) through the assessment of the 5' external transcribed spacer (5'-ETS), a promising IGS region for phylogenetic studies poorly studied in Avena genus. In this work, IGS length polymorphisms were detected mainly due to distinct 5'-ETS sequence types resulting from major differences in the number and organization of repeated motifs. Although species with A genome revealed a 5'-ETS organization (A-organization) similar to the one previously described in A. sativa, a distinct organization was unraveled in C genome diploid species (C-organization). Interestingly, such new organization presents a higher similarity with other Poaceae species than A-genome sequences, supporting the hypothesis of C-genome being the ancestral Avena genome. Additionally, polyploid species with both genomes mainly retain the A-genome 5'-ETS organization, confirming the preferential elimination of C-genome sequences in Avena polyploid species. Moreover, 5'-ETS sequences phylogenetic analysis consistently clustered the species studied according to ploidy and genomic constitution supporting the use of ribosomal genes to highlight Avena species evolutive pathways.info:eu-repo/semantics/publishedVersio

    Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry

    Get PDF
    Trichomes are specialized epidermal structures that function as physical and chemical deterrents against arthropod herbivores. Aerial tissues of cultivated tomato (Solanum lycopersicum) are populated by several morphologically distinct trichome types, the most abundant of which is the type VI glandular trichome that produces various specialized metabolites. Here, the effect of the hairless (hl) mutation on trichome density and morphology, chemical composition, and resistance to a natural insect herbivore of tomato was investigated. The results show that the major effect of hl on pubescence results from structural distortion (bending and swelling) of all trichome types in aerial tissues. Leaf surface extracts and isolated type VI glands from hl plants contained wild-type levels of monoterpenes, glycoalkaloids, and acyl sugars, but were deficient in sesquiterpene and polyphenolic compounds implicated in anti-insect defence. No-choice bioassays showed that hl plants are compromised in resistance to the specialist herbivore Manduca sexta. These results establish a link between the morphology and chemical composition of glandular trichomes in cultivated tomato, and show that hl-mediated changes in these leaf surface traits correlate with decreased resistance to insect herbivory

    Variation in tomato host response to Bemisia tabaci (Hemiptera: Aleyrodidae) in relation to acyl sugar content and presence of the nematode and potato aphid resistance gene Mi

    Get PDF
    Two commercial cultivars of tomato, Alta and Peto 95, the accession line number LA716 of Lycopersicon pennellii and lines 94GH-006 and 94GH-033 (backcrosses between Peto 95 and LA716), with different leaf acyl sugar contents were screened for resistance to Bemisia argentifolii Bellows & Perring (corresponding to the Spanish B-biotype of Bemisia tabaci (Gennadius), in greenhouse- and field-no-choice experiments. There was no oviposition on LA716 (with the highest acyl sugar content) while the greatest fecundity and fertility values were observed on the cultivar Alta (no acyl sugar content). However, no clear relationship was found between the low acyl sugar content in the other tomato cultivars tested and whitefly reproduction. Thus, resistance to B. tabaci did not appear to correlate with acylsugar content below a threshold level of 37.8 Îźg cm2 leaf. In a greenhouse choiceassay, B. tabaci exhibited reduced host preference and reproduction on the commercial tomato cultivars Motelle, VFN8 and Ronita all of which carry the Mi gene resistance to Meloidogyne nematodes and the aphid Macrosiphum euphorbiae Thomas),than on the Mi-lacking cultivars Moneymaker, Rio Fuego and Roma. When data of Mi-bearing plants were pooled, the mean values for daily infestation and pupal production of B. tabaci were significantly lower than those of Mi-lacking plants. This reflected a level of antixenosis- and antibiosis-based resistance in commercial tomato and indicated that Mi, or another closely linked gene, might be implicated in a partial resistance which was not associated either with the presence of glandular trichomes or their exudates. These findings support the general hypothesis for the existence of similarities among the resistance mechanisms to whiteflies, aphids and nematodes in commercial tomato plants.Peer reviewe
    corecore