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Abstract

The genus Avena comprises four distinct genomes organized in diploid (AA or CC), tetra-

ploid (AABB or AACC) and hexaploid species (AACCDD), constituting an interesting model

for phylogenetic analysis. The aim of this work was to characterize 45S rDNA intergenic

spacer (IGS) variability in distinct species representative of Avena genome diversity–A.

strigosa (AA), A. ventricosa (CvCv), A. eriantha (CpCp), A. barbata (AABB), A. murphyi

(AACC), A. sativa (AACCDD) and A. sterilis (AACCDD) through the assessment of the 5’

external transcribed spacer (5’-ETS), a promising IGS region for phylogenetic studies poorly

studied in Avena genus. In this work, IGS length polymorphisms were detected mainly due

to distinct 5’-ETS sequence types resulting from major differences in the number and organi-

zation of repeated motifs. Although species with A genome revealed a 5’-ETS organization

(A-organization) similar to the one previously described in A. sativa, a distinct organization

was unraveled in C genome diploid species (C-organization). Interestingly, such new orga-

nization presents a higher similarity with other Poaceae species than A-genome sequences,

supporting the hypothesis of C-genome being the ancestral Avena genome. Additionally,

polyploid species with both genomes mainly retain the A-genome 5’-ETS organization, con-

firming the preferential elimination of C-genome sequences in Avena polyploid species.

Moreover, 5’-ETS sequences phylogenetic analysis consistently clustered the species stud-

ied according to ploidy and genomic constitution supporting the use of ribosomal genes to

highlight Avena species evolutive pathways.

Introduction

Oat (Avena L., Poaceae family) is one of the most cultivated cereals worldwide and a valuable

resource in several countries both for human consumption and animal feed [1]. Genus Avena
L. constitutes an interesting model for phylogenetic studies comprising 26 species with differ-

ent genomes and ploidy levels [2]. Within this genus, the basic number of chromosomes is

x = 7 and there are diploid species with AA or CC genomes; tetraploids with AABB or AACC

genomes and hexaploids with AACCDD genome [3, 4]. While the C-genome is quite different
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from the other ones [5], B and D genomes are very similar to the A-genome [4, 6]. Besides,

since diploid species with B or D genomes have not been found, it seems that both diverged

from an ancestral A’ genome [7]. The model proposed for hexaploid species evolution involves

the hybridization of two diploid species, followed by chromosome duplication, originating an

AACC ancient genome. Afterwards, this allotetraploid underwent another hybridization event

with an AA diploid species and subsequent chromosome duplication. The evolution of the tet-

raploid species with AABB genomes was suggested to be an unrelated event that followed a

diploid AA species autopolyploidization (for a review see [8]). Cytogenetic evaluation of ribo-

somal loci has been extensively used to study Avena species variability [4, 9–12] suggesting that

allopolyploidization was followed by a preferential decrease in the number and/or size of C-

genome NORs (nucleolar organizing regions) [5].

To clarify Avena diversity and evolution several molecular markers have been used such as

simple sequence repeats (SSR) or microsatellites [13–16]; restriction fragment length polymor-

phism (RFLP) [17, 18]; amplified fragment length polymorphism (AFLP) [19] and inter-

retrotransposon amplified polymorphism (IRAP), retrotransposon-microsatellite amplified

polymorphism (REMAP) and Inter Simple Sequence Repeat (ISSR) [12, 20, 21]. 45S rDNA

units, organized in tandem repeats of IGS-18S-ITS1-5.8S-ITS2-25S [22], have also been tar-

geted for Avena phylogenetic analysis. The internal transcribed spacers (ITS1 and ITS2) and

the ITS1-5.8S-ITS2 region have been studied in detail in Avena species [5, 12, 23–25]. Addi-

tionally, Polanco and De La Vega [26] detected intergenic spacer (IGS) length polymorphism

in A. sativa cv. Cometa and the analysis of the longest sequence (4098bp, Accession Number:

X74820.1) disclosed five different types of repeats—A, B, C, D and E—being each one present

in two to 13 repetitions. These results were latter confirmed through PCR amplification in an

extensive collection of A. sativa accessions [27]. Inter and intraspecific variations in the IGS

have been also described in Avena by RFLP [23, 28, 29]. Nikoloudakis and colleagues [23]

assessed IGS diversity through restriction enzyme digestion of a ~4000bp fragment amplified

from fifty four accessions belonging to 23 Avena taxa and found 150 different banding pat-

terns. Within the IGS, the assessment of the 5’ external transcribed spacer (5’-ETS) has also

been used to clarify phylogenetic relationships and differentiate between closely related species

of distinct genera of Asteraceae [30] and Fagaceae [31]. However, this particular IGS region

that begins with the transcription initiation site (TIS) and encompasses several pre-rRNA pro-

cessing signals [26] was never detailed studied in Avena species.

The present work aimed to evaluate rDNA intergenic sequences diversity in several Avena
species with distinct ploidy levels and genome compositions contributing to enlighten Avena
genus evolution pathways.

Materials and methods

The plant material used includes the following species: A. strigosa (genome AA, 5284) obtained

from EAN Germplasm Bank (Oeiras, Portugal, PRT005); A. ventricosa (genome CvCv,

PI657337); A. eriantha (genome CpCp, Clav9050); A. barbata (genome AABB, PI367338); A.

murphyi (genome AACC, PI657606); A. sativa (genome AACCDD, Clav8250) and A. sterilis
(genome AACCDD, PI267989) obtained from United States Department of Agriculture, Agri-

cultural Research Service (USDA). At least three seeds were germinated and plants were main-

tained in growth chambers at 16h/day (22°C) and 8h/night (15°C). Leaves from different one

month old plants were stored at -80°C for further utilization and plants were then maintained

in greenhouse until life cycle completion.
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DNA extraction and PCR experiments

DNA extractions were performed with DNA Cell & Tissue Kit (Citogene) according to the

manufacturer’s instructions. DNA was quantified and stored at -20°C. Primers used are listed

in Table 1 and their schematic representation is presented in Fig 1 in relation to A. sativa
rDNA spacer published sequence (Accession Number: X74820.1). PCR experiments were per-

formed in at least three replicates for each primer combination in a 20 μl volume with: 1x PCR

buffer; 1.5 mM MgCl2; 0.1 mM dNTP’s; 0.25 to 1 μM of each primer; 1 U NZYTaq DNA poly-

merase (NZYtech); 30 to 50 ng DNA template and Milli-Q H2O for the remaining volume.

The IGS was amplified using the modified touchdown PCR program [32]: 94˚C for 4 minutes;

10 cycles of 94˚C for 1 minute; 65˚C for 30 seconds, decreasing 0.5˚C each cycle; 72˚C for 4

minutes; 25 cycles of 94˚C for 1 minute; 60˚C for 30 seconds; 72˚C for 4 minutes and 10

Table 1. Primers used to amplify 45S rDNA sequences.

Primer designation Sequence

25S 5’–GACGACTTAAATACGCGACGG–3’

18S 5’–AGACAAGCATATGACTACTGG–3’

ETS1_for 5’–TGTACCCCTCCTTCACAAGC–3’

ETS1_rev 5’–CGAGGCTTCCTTGATAGCAC–3’

ETS2_for 5’–AAAACCCGTGCAGGAACTC– 3’

ETS2_rev 5’–CAAGCACTTGAAAGGCAACA–3’

ETS3_for 5’–GGACACTCAGCACGCCTTC– 3’

ETS3_rev 5’–ACACGGGTCCAAAGCTACTC–3’

ETS4_for 5’–TCGGTGTTTACATGTTCGAG–3’

ITS_for 5’–GCATCGATGAAGAACGCAGC–3’

ITS_rev 5’–TCCTCCGCTTATTGATATGC–3’

Notes:

Primers were designed using Primer3: ETS1_for and rev, ETS2_for and rev and ETS3_for and rev based on the A. sativa rDNA spacer published sequence

(Accession Number: X74820.1); ETS4_for based on the A. ventricosa partial sequences obtained in this work (Accession Number: KM586761); and 18S

based on the T. aestivum 18S sequence (Accession Number: X07841). Primer 25S was designed by [26] and primers ITS_for and ITS_rev were designed

by [33] (ITS3 and ITS4, respectively).

https://doi.org/10.1371/journal.pone.0176170.t001

Fig 1. Organization of 45S rDNA units in A. sativa. IGS—intergenic spacer; 3’-ETS– 3’ External

transcribed spacer; TIS—transcription initiation site; 5’-ETS– 5’ external transcribed; ITS—internal

transcribed spacers. ETS1, ETS2 and ETS3 primers used for intergenic sequences amplification designed

based on the A. sativa sequence (Accession Number: X74820.1).

https://doi.org/10.1371/journal.pone.0176170.g001

Avena evolutionary clues from 45S rDNA 5’-ETS

PLOS ONE | https://doi.org/10.1371/journal.pone.0176170 April 27, 2017 3 / 17

https://doi.org/10.1371/journal.pone.0176170.t001
https://doi.org/10.1371/journal.pone.0176170.g001
https://doi.org/10.1371/journal.pone.0176170


minutes of final extension at 72˚C. Amplification of partial 5’-ETS sequences was carried as

followed: 94˚C for 4 minutes; 30 cycles of 94˚C for 1 minute; 57˚C for 45 seconds; 72˚C for 90

seconds; with 15 minutes of final extension at 72˚C. The complete 5’-ETS sequences were

amplified with the same program but with 2 minutes in each extension step. The amplification

of the ITS2 region used as control was performed with the partial 5’-ETS program but with

60˚C in the annealing step. PCR products were separated in 1 or 1.7% agarose gels with 1 Kb

Plus DNA Ladder (Invitrogen) as molecular marker. Gels were detected with ethidium bro-

mide and photographed using BIO-Rad GEL DOC 2000.

Firstly, primers 25S and 18S were used to amplify the IGS sequences. Primers ETS1_for and

rev, ETS2_for and rev were used to obtain 5’-ETS partial sequences (between TIS sequence

and D repeat). From those, primer ETS1_for was chosen to obtain the entire 5’-ETS in combi-

nation with 18S primer. Primers ETS3_for and rev were used combined with other primers to

further confirm the entire 5’-ETS sequencing and ETS4_for primer, designed based on the A.

ventricosa partial sequences obtained in this work (Accession Number: KM586761), was used

to assess the occurrence of C-organization sequences. Finally, ITS_for and rev primers were

used as internal controls to amplify the 45S rDNA ITS2 sequences.

Sequence cloning

Selected bands were isolated from agarose gels, purified with NZYGelpure (NZYtech) and the

fragments obtained were ligated into the pCR2.1 vector (Invitrogen) cloned into NZY5α Com-

petent cells (NZYtech). Transformed cells were incubated at 37°C overnight on LB agar plates

containing ampicillin (100 μg/ml) and X-Gal (20 μg/ml) and colony screening was performed

by PCR with M13 primers. Selected colonies were grown overnight at 37°C, 250 rpm in liquid

LB medium with ampicillin. Plasmids were purified with NZY Miniprep (NZYtech) and the

inserted fragments were sequenced through the Sanger method (Stabvida). The accession

numbers of all sequences obtained (Accession Numbers: KM586737 to KM586775) are listed

in S1 Table.

Sequence and phylogenetic analysis

The phylogenetic analysis was tested by aligning the sequences using different methods with

the default settings: Clustal Omega, MUSCLE, MAFFT and T-COFFEE (http://www.ebi.ac.uk/

Tools/msa/). Next, the best evolutionary model was tested in JModelTest2 with 3 substitutions

schemes [34]. A similar tool is available in MEGA version 6 [35] and was also tested. The best

phylogenetic model was selected based on the lowest BIC (Bayesian Information Criterion)

score and in general the same models had low scores in both programs. Lastly, the phyloge-

netic trees for the different alignments and with the different models were made in MEGA6

and in MrBayes [36] and all trees generated clustered the species similarly. Thus, the phyloge-

netic analysis was performed in MEGA version 6 and the sequences were aligned using the

MUSCLE application with default settings. The best phylogenetic model was tested and

selected based on the lowest BIC score and the Maximum Likelihood trees with 1000 bootstrap

repetitions were obtained. Since some sequences presented insertions, one standard sequence

of each species with the highest similarity with the published sequence for A. sativa (Accession

Number: X74820.1) was used to construct the tree based on the complete 5’-ETS sequences.

Similar phylogenetic trees were built using the 5’-ETS sequences excluding all repeat motifs

identified.

The alignment of all sequences in S2 Fig was obtained using the ClustalW application and

manually adjusted using BioEdit Sequence Alignment Editor version 7.2.5 [37]. Dotplots to
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identify repeats were constructed in Unipro UGENE [38] with minimum repeat length of 8bp

and 100% identity.

Results

The amplification of the entire 45S rDNA intergenic spacer (IGS) using 25S and 18S primers

from different individuals of each species did not reveal intraspecific diversity (Fig 2A). A

major band with a size approximated to the expected from the A. sativa rDNA IGS published

sequence (4098 bp, Accession Number X74820.1) was observed in all species analyzed. Yet, a

clear interspecific IGS length polymorphism was detected (~4000bp gel region, Fig 2B) with A.

strigosa presenting the longest spacer with ~4000bp, and A. ventricosa, A. barbata and A. steri-
lis showing smaller IGSs with similar dimension (~3600bp), as well as A. eriantha, A. murphyi
and A. sativa (~ 3800bp). Moreover, an additional band with lower intensity can be seen in

this gel region in A. eriantha and A. barbata.

Additionally, bands with much shorter dimension than the ~4000bp expected were

detected (Fig 2A). From them a band with ~500bp was observed in most species except in A.

vetricosa and A. eriantha and an additional band with ~1500bp was observed in A. murphyi. In

A. sterilis a smaller band with ~800bp, presenting higher intensity than the ~4000bp band, was

gel isolated and sequenced. This sequence corresponds to a truncated shorter variant of the

IGS possibly nonfunctional due to the lack of transcription initiation site (for detail see S1

Fig).

5’-ETS sequences analysis unraveled marked differences between A

and C genomes

We started our study of the 45S rDNA 5’ external transcribed spacer (5’-ETS) amplifying a

region between TIS sequence (TATAGTAGGG) and the beginning of D repeat using two

pairs of primers (Table 1) to amplify fragments with the following expected sizes: ETS1_for/

Fig 2. IGS complete sequence. PCR amplification of the complete IGS sequence from A. strigosa (str); A.

ventricosa (ven); A. eriantha (eri); A. barbata (bar); A. murphyi (mur); A. sativa (sat); and A. sterilis (ste) using

primers 25S and 18S. (A) Amplification from different individuals of each species. (B) Bands with the size

approximate to the expected from A. sativa IGS sequence. M: molecular marker 1Kb+. The arrowhead

indicates the ~800bp A. sterilis band sequenced.

https://doi.org/10.1371/journal.pone.0176170.g002
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ETS1_rev—1089 bp; ETS2_for/ETS2_rev—977 bp; ETS1_for/ETS2_rev—942 bp and ETS2_

for/ETS1_rev—1129 bp. The results presented in Fig 3 show that the four primers combina-

tions yielded bands with the expected dimension in species with the A-genome—A. strigosa, A.

barbata and A. sterilis, although A. barbata bands obtained with the primer ETS2_for showed

a considerable lower intensity. On the other hand, the C genome diploid species A. ventricosa
yielded a larger band (more ~150 bp) with primer ETS1_for and a lack of amplification prod-

ucts with primers ETS2_for. A. sativa produced bands with the expected sizes as well as the

other species with A genome. A. eriantha results were similar to the ones described for A. ven-
tricosa (results not shown). So it seems that the ETS2_for sequence is absent in the C-genome

diploid species.

PCR amplification products obtained with primers ETS2_for/ETS2_rev in A. strigosa, A.

sativa and A. sterilis and with primers ETS1_for/ETS1_rev in A. ventricosa and A. barbata
were sequenced (arrowheads in Fig 3). The overall similarity of all sequences with the A. sativa
published sequence was 94 to 99% except in A. ventricosa which shows 66% similarity traduced

by unexpected E repeats in the 507-881bp region and only one C repeat. Additionally, one

shorter clone from A. sativa revealed the lack of the C2 repeat. The analysis of the region sur-

rounding TIS (Fig 4) revealed insertions of a 30bp sequence or fragments of it, in A. strigosa,

A. sativa and A. sterilis. A search for regulatory elements in these sequences performed in

PLACE database [39] revealed that most motifs detected were related to promoter sequences.

Moreover, this study unraveled variability around TIS namely in the RNA polymerase I recog-

nized site established in several plant species (reviewed in [40]) in A. ventricosa and even a

truncated shorter variant lacking TIS was observed in A. sterilis.
Since the amplification using ETS1_for primer was effective in all genotypes analyzed, it

was further used combined with 18S primer to amplify 5’-ETS complete sequences in all spe-

cies studied. The results obtained presented in Fig 5 disclosed bands with similar length

(~1750bp) in all species with A-genome–A. strigosa, A. barbata, A. murphyi, A. sativa and A.

sterilis while C-genome diploid species–A. ventricosa and A. eriantha–showed shorter 5’-ETS

sequences (~1500bp) and A. eriantha revealed an additional band with 1400bp.

Complete 5’-ETSs were sequenced using internal primers based on the partial sequences

previously referred (primers ETS3_for and ETS3_rev, Table 1). Their alignment along with the

partial sequences is presented in S2 Fig. Sequence similarity analysis (summarized in Table 2)

revealed 96 to 99% homology amongst species with A genome and 99% similarity in C-

genome diploid species. The similarity observed between species with A- and diploid species

with C-genome was considerably lower (ranging from 70 to 76%) and few SNPs were detected

upstream the 18S, a region prone to loops formation. However, these SNPs do not appear to

affect loop conformation significantly since Mfold [41] analysis revealed similar structures

Fig 3. Partial 5’-ETS sequence. PCR amplification of partial 5’-ETS obtained with the following primers

combinations: ETS1_for/ETS2_rev; ETS2_for/ETS2_rev; ETS1_for/ETS1_rev; and ETS2_for/ETS1_rev on

A. strigosa (str); A. ventricosa (ven); A. barbata (bar) and A. sterilis (ste). M: molecular marker 1Kb+.

Arrowheads indicate bands sequenced.

https://doi.org/10.1371/journal.pone.0176170.g003
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with similar free energies (-29.90 kcal/mol in species with A-genome and -30.50 kcal/mol in

C-genome diploid species).

To identify repetitive elements and further understand the organization of the 5’-ETS, dot-

plots were constructed. Given the high similarity observed between all species with A-genome

studied, the A. strigosa sequence was used to construct a dotplot in comparison with A. sativa
published sequence (Fig 6A) revealing the repeats previously reported: two C repeats with

~150bp in the 300-600bp region; two short D repeats in the 1100–1200 bp region; and three E

repeats with approximately 120 bp in the 1200-1600bp region. This 5’-ETS organization is

henceforward referred as A-organization (Fig 7).

Since the ~1500bp sequences of C-genome diploid species—A. ventricosa and A. eriantha—

are similar, the A. ventricosa sequence was selected to construct a dotplot along with the A.

sativa published sequence (Fig 6B). C-genome diploid species dotplot analysis revealed the

presence of only one C repeat, as also revealed by the partial sequences described, followed by

three E repeats absent in A-organization. Additionally, only one D repeat and one E repeat are

Fig 4. TIS regions of IGS sequence. Alignment of IGS sequences surrounding the transcription initiation site

(TIS) from A. strigosa (str), A. sativa (sat), A. sterilis (ste), A. barbata (bar), A. ventricosa (ven) with A. sativa

published sequence (Accession Number: X74820.1). Roman numerals indicate different clones. Primer sequence

of ETS1_for (from position 64 to 83) and ETS2_for (from position 1 to 19) are underlined. TIS is highlighted in

yellow. TIS position +1 is highlighted in green.

https://doi.org/10.1371/journal.pone.0176170.g004

Fig 5. Complete 5’-ETS sequence. PCR amplification of the complete 5’-ETS obtained with primer

combination ETS1_for/18S from A. strigosa (str); A. ventricosa (ven); A. eriantha (eri); A. barbata (bar); A.

murphyi (mur); A. sativa (sat) and A. sterilis (ste). M: molecular marker 1Kb+.

https://doi.org/10.1371/journal.pone.0176170.g005
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Table 2. Similarity between complete 5’-ETS sequences of all Avena species analyzed.

% X74820 Str Ven EriL EriS Bar Mur Sat Ste

X74820 100 97 70 71 75 97 98 96–97 96–99

Str 100 71 71 75 99 98 99 98

Ven 100 99 99 71–72 71 71–72 71–72

EriL 100 100 71 70–71 71–72 71

EriS 100 75–76 75 75–76 75–76

Bar 98 98 98–99 98–99

Mur 100 98 98

Sat 100 98–100

Ste 98

Notes:

EriL and EriS represent the sequences of the larger and shorter bands of A. eriantha, respectively.

The similarity between the sequences of species with A-genome and C-genome diploid species is highlighted in light grey.

https://doi.org/10.1371/journal.pone.0176170.t002

Fig 6. 5’-ETS sequence dotplots. Dotplots (min length 8, identity 100%) of the 5’-ETS sequences in comparison between the published

sequence of A. sativa (Accession Number: X74820.1) and A) A. strigosa (Accession Number: KM586737) or B) A. ventricosa (Accession

Number: KM586759). C) Comparison of the +1011 to +1475 region of A. ventricosa with the homologous H. sempervirens sequence

(Accession Number: GQ324269.1). Solid underline highlights the C repeats, dot outlines D repeats and dash outline highlights the E

repeats.

https://doi.org/10.1371/journal.pone.0176170.g006
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present upstream the 18S sequence. This organization described in A. ventricosa is henceforth

referred as C-organization (Fig 7) and explains the unexpected presence of shorter 5’-ETS

sequences in C-genome diploid species (Fig 5). In fact, A. ventricosa partial sequence is larger

(Fig 3) due to the higher number of E repeats downstream C repeat but the complete sequence

is shorter due to the lower number of E repeats downstream the D repeat (Fig 7). Finally, the

1400bp shorter variant unraveled in A. eriantha lacks the first copy of the E repeat.

Interspecific comparisons of E repeats show the highest similarity between A. sativa repeats

E2 and E3 and the A. ventricosa repeat closest to 18S (82%). E repeats comparison within A.

ventricosa revealed that the three repeats closer to the C repeat are more similar (94–96%) than

the one closer to 18S (75 to 78%). Interestingly, the A. ventricosa E repeat proximal to 18S is

more similar (91%) to other Aveninae sub-tribe species as Helictotrichon (GQ324269.1) than

with the other Avena E repeats analyzed. A. sativa E2 and E3 repeats present 81% similarity

with the Helictotrichon sequence.

Unraveling Avena A and C genomes evolutive clues

To assess the presence of sequences with C-organization in polyploid species with C-

genome a ETS4_for primer (for localization see Fig 7) was designed based on our A. ventri-
cosa partial sequences (Accession Number: KM586761) and combined with 18S primer (Fig

8, ETS4_for/18S). As control 45S rDNA ITS2 sequence was amplified yielding the expected

band with ~380bp in all species (Fig 8, ITS_for/ITS_rev). ETS4_for primer matches an IGS

sequence domain downstream the C repeat in A. ventricosa that is absent in the A. sativa
sequence (Fig 7) and the absence of amplification in A-genome diploid A. strigosa confirms

that such sequence is not present in the A genome diploid species. Conversely, the amplifi-

cation of A. ventricosa and A. eriantha with primers ETS4_for and 18S yielded the expected

band with ~1100bp and an additional band with ~1000bp in A. eriantha. The same experi-

ment amplified fragments with higher dimensions in polyploid species as A. murphyi, A.

sativa and A. sterilis. Sequence comparative analysis of the bands amplified from the poly-

ploid genotypes and from A. ventricosa (indicated in Fig 8) confirmed the presence of three

copies of the E repeat downstream the C repeat in A. ventricosa and sequences with the C-

organization type were also detected in polyploid species although with higher number of E

repeats. In fact, A. sativa and A. sterilis present four repeats and in A. murphyi four, six and

seven E repeats were observed.

Fig 7. 5’-ETS organization types. Representation of 45S rDNA 5’-ETS organization in species with A-

genome (A-organization) and in diploid species with C-genome (C-organization). Arrows represent the

relative location of the internal primers used to sequence the complete 5’-ETS.

https://doi.org/10.1371/journal.pone.0176170.g007
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To attempt a deeper understanding on 5’-ETS organization evolutive patterns, organization

types A and C were compared with related species of the same tribe (Puccinellia bruggemannii
Accession Number: GQ283217.1), of the same sub-tribe (Helictotrichon sempervirens, Acces-

sion Number: GQ324269.1); and of the same sub-family (Triticum aestivum Accession Num-

ber: X07841.1). This analysis revealed a higher overall homology of C-organization with

sequences from A. ventricosa, H. sempervirens, P. bruggemannii and T. aestivum than between

A-organization and sequences from referred related species. This great homology of C-organi-

zation with IGSs from species of other genus was moreover confirmed through dotplot matrix

comparing A. ventricosa and H. sempervirens sequences (Fig 6C).

The maximum-likelihood consensus tree constructed using Avena 5’-ETSs obtained in this

study and sequences from other Poaceae species allowed the separation of a clade comprising

all Avena species. Avena species are further separated in different clades, one including C

genome diploid species and the other including species with the A genome (Fig 9). Likewise,

the consensus tree constructed using all clones of complete and partial 5’-ETS sequences

obtained from all Avena genotypes analyzed (Fig 10) confirms a clear separation of C genome

diploid species.

To evaluate if the phylogenetic inference described only reflects repeats organization, a phy-

logenetic tree was built using the external transcribed sequences excluding all repeat motifs

(repeats: C2, E2, E3, Ei, Eii and Eiii when applicable). As can be seen in Fig 11, a clear separa-

tion is similarly obtained between C genome diploid species and species with A genome con-

sidering only 5’-ETS unique sequences. Moreover, clusters within the A genome branch

correspond to the ones obtained with the complete 5’-ETSs (Fig 9) were observed, namely one

cluster grouping A. murphyi, A. sterilis and the published A. sativa sequence and the other clus-

ter comprising A. strigosa, A. barbata and A. sativa.

To assess the robustness of the phylogenetic trees presented in this study, sequence align-

ment was tested using different methods (Clustal Omega, MUSCLE, MAFFT and T-COFFEE).

The evolutionary models for the alignments generated were tested in JModelTest2 and

MEGA6 and the best model was selected based on the lowest BIC (Bayesian Information Crite-

rion) score. For all models selected, phylogenetic trees were obtained using MEGA6 and in

MrBayes. Overall, all trees generated clustered the species similarly reinforcing the use of the

5’-ETS for Avena phylogeny.

Fig 8. C-organization specific amplification. PCR amplification obtained with primers ETS4_for/18S (2–8)

and primers ITS2_for/ITS2_rev (9–15); 16 –molecular marker 1Kb+. A. strigosa (str); A. ventricosa (ven); A.

eriantha (eri); A. barbata (bar); A. murphyi (mur); A. sativa (sat) and A. sterilis (ste). M: molecular marker 1Kb

+. Arrowheads mark the bands isolated for sequence analysis.

https://doi.org/10.1371/journal.pone.0176170.g008
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Discussion

In this study 45S rDNA IGS sequences, particularly the 5’-ETS organization, were for the first

time comparatively characterized in species of the genus Avena with different ploidy levels and

genomic constitutions. The evaluation of the intergenic spacer (IGS) unraveled clear length

variability between the Avena species A. strigosa, A. barbata, A. murphyi, ventricosa, A.

eriantha, A. sativa and A. sterilis. IGS variability was previously reported in Poaceae between

different species [45, 46] and varieties [47] as well as between distinct A. sativa accessions [27].

Additionally, besides the IGS sequences with the expected size (~4000bp) amplicons with dis-

tinct lengths were also detected in species with A genome—A. strigosa, A. barbata, A. murphyi,
A. sativa and A. sterilis. Similar within species IGS length variation was also described in A.

sativa [26] and more recently in Medicago arborea [48] and in the Fagaceae family [31]. More-

over, the detection of IGS sequences with different lengths within Avena species are mainly

Fig 9. 5’-ETS consensus tree. Maximum-likelihood consensus tree based on 5’-ETS from A. strigosa (str,

KM586737), A. ventricosa (ven, KM586760), A. eriantha (eri, KM586763), A. barbata (bar, KM586740), A.

murphyi (mur, KM586741), A. sativa (sat, KM586743) and A. sterilis (ste, KM586753); and from sequences

previously published: A. sativa (sat, X74820), H. sempervirens (hel, GQ324269); A. elatius (arr, KR052874);

A. monticola (ant, GQ324241), P. bruggemannii (puc, GQ283217), C. arundinacea (cin, GQ324260), H.

vulgare (hor, HQ825319), S. cereale (sec, JF489233), T. aestivum (tri, X07841), A. umbellulata (aeg,

AJ315048), Z. mays (zea, X03989) and O. sativa (ory, GU111553). Accession Numbers in brackets. Tree

obtained using the Hasegawa-Kishino-Yano model [42] with discrete gamma distribution; numbers on the

branches represent bootstrap support for 1000 replicates; scale indicates the percentage of divergence.

https://doi.org/10.1371/journal.pone.0176170.g009
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due to differences in the non-transcribed spacer since 5’-ETS amplifications yielded a unique

fragment in most species, except in diploid C-genome species.

The detailed analysis of the 5’-ETS sequences presented in this work shows that all species

with A-genome have the repeats pattern previously described in A. sativa [26] and here

Fig 10. 5’-ETS clones consensus tree. Maximum-likelihood consensus tree based on all complete and partial 5’-ETS sequence clones from Avena

species analyzed (Accession Numbers in S1 Table) and from T. aestivum published sequence (Accession Number: X07841) as out-group. Tree

obtained using the Kimura phylogenetic model [43]; numbers on the branches represent bootstrap support for 1000 replicates, scale indicates the

percentage of divergence.

https://doi.org/10.1371/journal.pone.0176170.g010

Fig 11. 5’-ETS unique sequences consensus tree. Maximum-likelihood consensus tree based on 5’-ETS

unique sequences from Avena (excluding repeat sequences C2, E2, E3, Ei, Eii and Eiii): A. strigosa (str,

KM586737); A. ventricosa (ven, KM586760); A. eriantha (eri, KM586763); A. barbata (bar, KM586740); A.

murphyi (mur, KM586741); A. sativa (sat, KM586743) and A. sterilis (ste, KM586753)and T. aestivum (tri,

X07841) as the out-group. Accession Numbers in brackets. Tree obtained using the Tamura model [44];

numbers on the branches represent bootstrap support for 1000 replicates, scale indicates the percentage of

divergence.

https://doi.org/10.1371/journal.pone.0176170.g011
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designated as A-organization. However, we identified a novel 5’-ETS organization pattern in

C-genome diploid species—A. ventricosa and A. eriantha -, nominated C-organization. This

C-organization lacks one C and one D repeat and is also characterized by the presence of only

one E repeat downstream the D repeat and two or three E repeats located between the C and D

motifs (Fig 12). Both dotplot (Fig 6B and 6C) and phylogenetic tree (Fig 11) analyses of Avena
5’-ETS sequences in comparison with other Poaceae taxa shows a higher similarity of C-

genome organization than of A-organization with those related genera, suggesting an ances-

trality of the C-genome.

Additionally, the exploitation of 5’-ETS repeats diversity allows the proposal presented in

Fig 12 for the succession of events involved in Avena genomes evolution. Comparative analysis

of A and C 5’-ETS organizations with sequences from related species revealed that E repeat is

only absent in Z. mays and O. Sativa, while D repeat is found in all related species analyzed

(for species and Accession Numbers see Fig 9), suggesting that D repeats are the more ances-

tral ones. On the other hand, C repeats present in both organization types seem to be specific

of Avena genus since apart from A. sativa published sequence, no similar sequences are found

through BLAST in NCBI database. Thus, the differences unraveled between A- and C-organi-

zations must have emerged after the divergence of the Avena genus from the ancestral Aveni-

nae. Further considering the nucleotide polymorphisms observed between different repeats

and between repeats from the distinct species analyzed (S2 Fig) we suggest that the more

ancient event that occurred in A-organization was E repeat duplication, followed by C repeat

duplication and a second duplication of the E repeat and, lastly, a D repeat duplication arose.

Considering the organization pattern disclosed in C genome diploid species, the first plausible

event was the duplication/translocation of the final E repeat to upstream the D repeat, followed

by subsequent duplications of E repeats that seem to occurred more recently.

Fig 12. Avena 5’-ETS evolution. Representation of the proposed succession of events leading to the

establishment of 45S rDNA 5’-ETS A- and C-organization.

https://doi.org/10.1371/journal.pone.0176170.g012

Avena evolutionary clues from 45S rDNA 5’-ETS

PLOS ONE | https://doi.org/10.1371/journal.pone.0176170 April 27, 2017 13 / 17

https://doi.org/10.1371/journal.pone.0176170.g012
https://doi.org/10.1371/journal.pone.0176170


Our results prove that the 45S rDNA 5’-ETS domain can be a particularly valuable option

to enlighten the phylogenetic pathways of the genus Avena. Indeed, the tree presented based

on the 5’-ETS consensus sequences unraveled a clear separation between the C-genome dip-

loid species and the other Avena species. It must moreover be emphasized that those clusters

of Avena species are revealed both by the analysis of entire 5’-ETS sequences (Fig 9) as well as

when repeat motifs are excluded (Fig 11). Thus, besides the described 5’-ETS repeats narrative,

this IGS region discloses a consistent evolutionary history since the phylogenetic analysis per-

formed suggest that both 5’-ETS unique sequences and repeat motifs were under the same

selection force.

This is particularly important considering the high homology of the internal transcribed

spaces traditionally used in phylogenetic studies extensively reported in Avena [5, 12, 23–25].

Concordantly, 5’-ETS sequences have been previously considered more efficient than tradi-

tional ITS1 and ITS2 to study phylogenetic relationships between related species [31, 49].

The present work may also be relevant in the context of rDNA loci remodeling events

induced by polyploidization [50, 51] corroborating that sequences from C-genome origin

NORs tend to be eliminated in Avena polyploid species [5] since complete 5’-ETS C-organi-

zation was not detected in polyploid species with C genome. However, the detection of par-

tial C-genome 5’-ETS sequences in polyploid species A. murphyi, A. sativa and A. sterilis
using C-organization specific primers suggests the occurrence of complex restructuring

events induced by polyploidization. Similarly, molecular traces of C-genome specific ITS

sequences were reported in polyploid species by [5] corresponding to 1.5% of C-genome ori-

gin rDNA copies. Furthermore, it can be suggested that C-genome sequences loss may be

correlated with differences in parental genome size in Avena polyploid species. Indeed, C

genome is larger (5.48 pg A.ventricosa) than A-genome (4 to 5.33 pg in A-genome diploid

species) (Plant DNA C-values Database, [52]). Thus, C-organization 5’-ETS sequence loss

may be a part of parental genome size homogenization that may preferentially affects the

larger parental genome to stabilize Avena polyploid species, as proposed to other Poaceae
polyploid species [53]. An integrative view of the data obtained in this study evidences that

the study of Avena ribosomal DNA evolution patterns constitute an interesting model to

assess Poaceae taxa evolutionary pathways as well as to understand restructuring events asso-

ciated with polyploidization.
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