3,517 research outputs found
Phase diagram of the penetrable square well-model
We study a system formed by soft colloidal spheres attracting each other via
a square-well potential, using extensive Monte Carlo simulations of various
nature. The softness is implemented through a reduction of the infinite part of
the repulsive potential to a finite one. For sufficiently low values of the
penetrability parameter we find the system to be Ruelle stable with square-well
like behavior. For high values of the penetrability the system is
thermodynamically unstable and collapses into an isolated blob formed by a few
clusters each containing many overlapping particles. For intermediate values of
the penetrability the system has a rich phase diagram with a partial lack of
thermodynamic consistency.Comment: 6 pages and 5 figure
Quantum Monte Carlo Algorithm Based on Two-Body Density Functional Theory for Fermionic Many-Body Systems: Application to 3He
We construct a quantum Monte Carlo algorithm for interacting fermions using
the two-body density as the fundamental quantity. The central idea is mapping
the interacting fermionic system onto an auxiliary system of interacting
bosons. The correction term is approximated using correlated wave functions for
the interacting system, resulting in an effective potential that represents the
nodal surface. We calculate the properties of 3He and find good agreement with
experiment and with other theoretical work. In particular, our results for the
total energy agree well with other calculations where the same approximations
were implemented but the standard quantum Monte Carlo algorithm was usedComment: 4 pages, 3 figures, 1 tabl
Correlations in Hot Asymmetric Nuclear Matter
The single-particle spectral functions in asymmetric nuclear matter are
computed using the ladder approximation within the theory of finite temperature
Green's functions. The internal energy and the momentum distributions of
protons and neutrons are studied as a function of the density and the asymmetry
of the system. The proton states are more strongly depleted when the asymmetry
increases while the occupation of the neutron states is enhanced as compared to
the symmetric case. The self-consistent Green's function approach leads to
slightly smaller energies as compared to the Brueckner Hartree Fock approach.
This effect increases with density and thereby modifies the saturation density
and leads to smaller symmetry energies.Comment: 7 pages, 7 figure
Field-theoretical approach to a dense polymer with an ideal binary mixture of clustering centers
We propose a field-theoretical approach to a polymer system immersed in an
ideal mixture of clustering centers. The system contains several species of
these clustering centers with different functionality, each of which connects a
fixed number segments of the chain to each other. The field-theory is solved
using the saddle point approximation and evaluated for dense polymer melts
using the Random Phase Approximation. We find a short-ranged effective
inter-segment interaction with strength dependent on the average segment
density and discuss the structure factor within this approximation. We also
determine the fractions of linkers of the different functionalities.Comment: 27 pages, 9 figures, accepted on Phys. Rev.
Nanofriction behavior of cluster-assembled carbon films
We have characterized the frictional properties of nanostructured (ns) carbon
films grown by Supersonic Cluster Beam Deposition (SCBD) via an Atomic
Force-Friction Force Microscope (AFM-FFM). The experimental data are discussed
on the basis of a modified Amonton's law for friction, stating a linear
dependence of friction on load plus an adhesive offset accounting for a finite
friction force in the limit of null total applied load. Molecular Dynamics
simulations of the interaction of the AFM tip with the nanostructured carbon
confirm the validity of the friction model used for this system. Experimental
results show that the friction coefficient is not influenced by the
nanostructure of the films nor by the relative humidity. On the other hand the
adhesion coefficient depends on these parameters.Comment: 22 pages, 6 figures, RevTex
Quenching of Weak Interactions in Nucleon Matter
We have calculated the one-body Fermi and Gamow-Teller charge-current, and
vector and axial-vector neutral-current nuclear matrix elements in nucleon
matter at densities of 0.08, 0.16 and 0.24 fm and proton fractions
ranging from 0.2 to 0.5. The correlated states for nucleon matter are obtained
by operating on Fermi-gas states by a symmetrized product of pair correlation
operators determined from variational calculations with the Argonne v18 and
Urbana IX two- and three-nucleon interactions. The squares of the charge
current matrix elements are found to be quenched by 20 to 25 % by the
short-range correlations in nucleon matter. Most of the quenching is due to
spin-isospin correlations induced by the pion exchange interactions which
change the isospins and spins of the nucleons. A large part of it can be
related to the probability for a spin up proton quasi-particle to be a bare
spin up/down proton/neutron. We also calculate the matrix elements of the
nuclear Hamiltonian in the same correlated basis. These provide relatively mild
effective interactions which give the variational energies in the Hartree-Fock
approximation. The calculated two-nucleon effective interaction describes the
spin-isospin susceptibilities of nuclear and neutron matter fairly accurately.
However 3-body terms are necessary to reproduce the compressibility. All
presented results use the simple 2-body cluster approximation to calculate the
correlated basis matrix elements.Comment: submitted to PR
Two pion mediated scalar isoscalar NN interaction in the nuclear medium
We study the modification of the nucleon nucleon interaction in a nuclear
medium in the scalar isoscalar channel, mediated by the exchange of two
correlated ( channel) or uncorrelated pions. For this purpose we use a
standard approach for the renormalization of pions in nuclei. The corrections
obtained for the interaction in the medium in this channel are of the
order of 20% of the free one in average, and the consideration of short range
correlations plays an important role in providing these moderate changes. Yet,
the corrections are sizable enough to suggest further studies of the stability
and properties of nuclear matter.Comment: 27 page
Neutron matter at zero temperature with auxiliary field diffusion Monte Carlo
The recently developed auxiliary field diffusion Monte Carlo method is
applied to compute the equation of state and the compressibility of neutron
matter. By combining diffusion Monte Carlo for the spatial degrees of freedom
and auxiliary field Monte Carlo to separate the spin-isospin operators, quantum
Monte Carlo can be used to simulate the ground state of many nucleon systems
(A\alt 100). We use a path constraint to control the fermion sign problem. We
have made simulations for realistic interactions, which include tensor and
spin--orbit two--body potentials as well as three-nucleon forces. The Argonne
and two nucleon potentials plus the Urbana or Illinois
three-nucleon potentials have been used in our calculations. We compare with
fermion hypernetted chain results. We report results of a Periodic Box--FHNC
calculation, which is also used to estimate the finite size corrections to our
quantum Monte Carlo simulations. Our AFDMC results for models of pure
neutron matter are in reasonably good agreement with equivalent Correlated
Basis Function (CBF) calculations, providing energies per particle which are
slightly lower than the CBF ones. However, the inclusion of the spin--orbit
force leads to quite different results particularly at relatively high
densities. The resulting equation of state from AFDMC calculations is harder
than the one from previous Fermi hypernetted chain studies commonly used to
determine the neutron star structure.Comment: 15 pages, 15 tables and 5 figure
Short-range Correlations in a CBF description of closed-shell nuclei
The Correlated Basis Function theory (CBF) provides a theoretical framework
to treat on the same ground mean-field and short-range correlations. We
present, in this report, some recent results obtained using the CBF to describe
the ground state properties of finite nuclear systems. Furthermore we show some
results for the excited state obtained with a simplified model based on the CBF
theory.Comment: 10 latex pages plus 6 uuencoded figure
- …