122 research outputs found

    Socio – cultural existence of modern East Mary subethnos

    Get PDF
    The article deals with the history, traditions and way of life of sub-ethnic group of the Finno-Ugric tribes –the Eastern Maris, who are considered the "last pagans of Europe". Using specific ethnographic material, scientific and popular-scientific works, the authors showed the unique culture of the Eastern Maris sub-ethnos, pagan beliefs, preserved to date and reflecting people’s social existence, beauty of the traditions and essential national characteristics. The authors draw a conclusion that the Eastern Maris present an independent sub-ethnos tending to self-reproduction. Being amidst the powerful Slavic and Turkic civilizations, the Eastern Marian sub ethnos managed to maintain its national self-identity with some borrowings from neighboring cultures

    Nuclear Scissors Mode with Pairing

    Full text link
    The coupled dynamics of the scissors mode and the isovector giant quadrupole resonance are studied using a generalized Wigner function moments method taking into account pair correlations. Equations of motion for angular momentum, quadrupole moment and other relevant collective variables are derived on the basis of the time dependent Hartree-Fock-Bogoliubov equations. Analytical expressions for energy centroids and transitions probabilities are found for the harmonic oscillator model with the quadrupole-quadrupole residual interaction and monopole pairing force. Deformation dependences of energies and B(M1)B(M1) values are correctly reproduced. The inclusion of pair correlations leads to a drastic improvement in the description of qualitative and quantitative characteristics of the scissors mode.Comment: 36 pages, 5 figures, the results of calculation by another method and the section concerning currents are adde

    Continued fraction representation of the Coulomb Green's operator and unified description of bound, resonant and scattering states

    Full text link
    If a quantum mechanical Hamiltonian has an infinite symmetric tridiagonal (Jacobi) matrix form in some discrete Hilbert-space basis representation, then its Green's operator can be constructed in terms of a continued fraction. As an illustrative example we discuss the Coulomb Green's operator in Coulomb-Sturmian basis representation. Based on this representation, a quantum mechanical approximation method for solving Lippmann-Schwinger integral equations can be established, which is equally applicable for bound-, resonant- and scattering-state problems with free and Coulombic asymptotics as well. The performance of this technique is illustrated with a detailed investigation of a nuclear potential describing the interaction of two α\alpha particles.Comment: 7 pages, 4 ps figures, revised versio

    Sensitivities of the Proton-Nucleus Elastical Scattering Observables of 6He and 8He at Intermediate Energies

    Get PDF
    We investigate the use of proton-nucleus elastic scattering experiments using secondary beams of 6He and 8He to determine the physical structure of these nuclei. The sensitivity of these experiments to nuclear structure is examined by using four different nuclear structure models with different spatial features using a full-folding optical potential model. The results show that elastic scattering at intermediate energies (<100 MeV per nucleon) is not a good constraint to be used to determine features of structure. Therefore researchers should look elsewhere to put constraints on the ground state wave function of the 6He and 8He nuclei.Comment: To be published in Phys. Rev.

    Modelling of regulatory factor and managerial impact assessment in the regional economy sectors: a case-study of the Kaliningrad region (Russia)

    Get PDF
    This article discusses the methodology of developing tools for assessing regulatory factors and managerial impacts on the regional economy and individual sectors and businesses. The potential of projection models is investigated, including balance models, convergence of regional and sectoral projection and compiling reliable and representative data sets capable of describing the current economic situation. An attempt was made to develop a series of models for several regional economies; to that end, the modelling of managerial and regulatory impact assessment was used in combination with the well-known value chain approach. In the interests of effective public administration, one of the requirements is to create sectoral model formats compatible with the regional projection models. Results of pilot modelling managerial and regulatory impacts on Kaliningrad region’s economies are presented through examples of agribusiness, transport, industry, tourism and recreation. Implementation of regulatory impact modelling in the framework of the suggested approach is proved for other regions. The main advantage of the developed models for the regional management is their ability to reduce uncertainty in decision-making due to obtaining estimates of the impact of the decisions on the changing situation and the conditions for the development of sectors and industries

    Allogeneic biomaterial: a fibrosis inhibitor in ischemic myocardial damage

    Get PDF
    Injectable allogeneic decellularized biomaterials are being developed both as scaffolds for delivery of cellular products and as independent pharmacological agents that affect the cascade of tissue reactions during the period of post-ischemic myocardial remodeling. Biomaterial degradation products can affect cellular processes and modulate cytokine effects, thus determining the healing strategy of damaged tissue. In this work, the influence of biomaterial on the expression of key fibrogenic factors by the cells of tissue bed was demonstrated, and the degree of damage to the myocardium during its ischemic damage was experimentally determined. The aim of our study was to determine the area of myocardial scar degeneration and detection of key fibrogenic factors (bFGF-1, TGFb1, MMP-9), as well as TIMP-2 (MMP-9 antagonist) at the acute and subacute stages of myocardial infarction after implantation of allogeneic powder-like biomaterial in an experimental model.In the course of experiments, the left ventricular coronary artery was ligated in male Wistar rats (experimental group). All animals were divided into 3 groups: experimental group I (n = 50), experimental group II (n = 50), and controls (n = 50). In experimental group I, the artery ligation was simultaneously accompanied by intramyocardial administration of powder-like biomaterial suspension (2 mg). In experimental group II, the allogeneic powder-like biomaterial was administered 5 days after coronary occlusion, and only physiological saline was administered in the control group. The animals were withdrawn from experiment on days +3, +7, +14, +30, and +45. Standard histological assessment (hematoxylin and eosin staining, according to Mallory) and immunohistochemical examination (MMP-9, TGFb1, bFGF-1, TIMP-2) were made, and statistical evaluation was performed. The cells with positive staining were counted, and the scar area index was calculated.We have found that administration of dispersed allogeneic biomaterial was followed by a five-fold decrease in the degree of scar degeneration in both experimental groups at the acute and subacute stages of ischemic myocardial damage as compared to the control group. A significantly decreased expression of fibrogenic factors (MMP-9, TGFb1, bFGF-1) by the local cells was found, along with increased activity of metalloproteinase inhibitor (TIMP-2) in connective tissue cells.Decellularized allogeneic powder-like biomaterial serves as a fibrosis inhibitor and promotes cardioprotection during myocardial remodeling at the initial stages after ischemic injury

    Spin dynamics in the diluted ferromagnetic Kondo lattice model

    Get PDF
    The interplay of disorder and competing interactions is investigated in the carrier-induced ferromagnetic state of the Kondo lattice model within a numerical finite-size study in which disorder is treated exactly. Competition between impurity spin couplings, stability of the ferromagnetic state, and magnetic transition temperature are quantitatively investigated in terms of magnon properties for different models including dilution, disorder, and weakly-coupled spins. A strong optimization is obtained for T_c at hole doping p << x, highlighting the importance of compensation in diluted magnetic semiconductors. The estimated T_c is in good agreement with experimental results for Ga_{1-x}Mn_x As for corresponding impurity concentration, hole bandwidth, and compensation. Finite-temperature spin dynamics is quantitatively studied within a locally self-consistent magnon renormalization scheme, which yields a substantial enhancement in T_c due to spin clustering, and highlights the nearly-paramagnetic spin dynamics of weakly-coupled spins. The large enhancement in density of low-energy magnetic excitations due to disorder and competing interactions results in a strong thermal decay of magnetization, which fits well with the Bloch form M_0(1-BT^{3/2}) at low temperature, with B of same order of magnitude as obtained in recent squid magnetization measurements on Ga_{1-x}Mn_x As samples.Comment: 13 pages, 14 figure

    Determination of pi-N scattering lengths from pionic hydrogen and pionic deuterium data

    Get PDF
    The pi-N s-wave scattering lengths have been inferred from a joint analysis of the pionic hydrogen and the pionic deuterium x-ray data using a non-relativistic approach in which the pi-N interaction is simulated by a short-ranged potential. The pi-d scattering length has been calculated exactly by solving the Faddeev equations and also by using a static approximation. It has been shown that the same very accurate static formula for pi-d scattering length can be derived (i) from a set of boundary conditions; (ii) by a reduction of Faddeev equations; and (iii) through a summation of Feynman diagrams. By imposing the requirement that the pi-d scattering length, resulting from Faddeev-type calculation, be in agreement with pionic deuterium data, we obtain bounds on the pi-N scattering lengths. The dominant source of uncertainty on the deduced values of the pi-N scattering lengths are the experimental errors in the pionic hydrogen data.Comment: RevTeX, 20 pages,4 PostScript figure

    Interfering Doorway States and Giant Resonances. I: Resonance Spectrum and Multipole Strengths

    Get PDF
    A phenomenological schematic model of multipole giant resonances (GR) is considered which treats the external interaction via common decay channels on the same footing as the coherent part of the internal residual interaction. The damping due to the coupling to the sea of complicated states is neglected. As a result, the formation of GR is governed by the interplay and competition of two kinds of collectivity, the internal and the external one. The mixing of the doorway components of a GR due to the external interaction influences significantly their multipole strengths, widths and positions in energy. In particular, a narrow resonance state with an appreciable multipole strength is formed when the doorway components strongly overlap.Comment: 20 pages, LaTeX, 3 ps-figures, to appear in PRC (July 1997
    • …
    corecore