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The interplay of disorder and competing interactions is investigated in the carrier-induced ferro-
magnetic state of the Kondo lattice model within a numerical finite-size study in which disorder is
treated exactly. Competition between impurity spin couplings, stability of the ferromagnetic state,
and magnetic transition temperature are quantitatively investigated in terms of magnon properties
for different models including dilution, disorder, and weakly-coupled spins. A strong optimization
is obtained for Tc at hole doping p << x, highlighting the importance of compensation in di-
luted magnetic semiconductors. The estimated Tc is in good agreement with experimental results
for Ga1−xMnxAs for corresponding impurity concentration, hole bandwidth, and compensation.
Finite-temperature spin dynamics is quantitatively studied within a locally self-consistent magnon
renormalization scheme, which yields a substantial enhancement in Tc due to spin clustering, and
highlights the nearly-paramagnetic spin dynamics of weakly-coupled spins. The large enhancement
in density of low-energy magnetic excitations due to disorder and competing interactions results
in a strong thermal decay of magnetization, which fits well with the Bloch form M0(1 − BT 3/2)
at low temperature, with B of same order of magnitude as obtained in recent squid magnetization
measurements on Ga1−xMnxAs samples.

I. INTRODUCTION

The discovery of ferromagnetism in diluted magnetic
semiconductors (DMS) such as Ga1−xMnxAs,1,2 with
transition temperature Tc ≃ 110 K for Mn concentra-
tion x ≃ 5%,2,3 and ≃ 150 K in films for x in the range
6.7−8.5%,4,5 has generated tremendous interest not only
in view of potential technological applications, but also
due to the novel ferromagnetism exhibited by these sys-
tems in which magnetic interaction between localized
spins are mediated by doped carriers. The long-range
oscillatory nature of the carrier-mediated spin couplings
results in a variety of interesting behaviour such as sig-
nificant sensitivity of spin stiffness and transition tem-
perature Tc on carrier concentration, competing antifer-
romagnetic interaction and noncollinear ordering, spin-
glass behaviour, spin clustering and disorder-induced lo-
calization etc.,6–20 as recently reviewed.21,22

DMS such as Ga1−xMnxAs are mixed spin-fermion sys-
tems in which the S = 5/2 Mn++ impurities replace
Ga+++, thereby contributing a hole to the semiconduc-
tor valence band. However, large compensation due to
As antisite defects reduces the hole density p to nearly
10% of Mn concentration x, which plays a key role in the
stabilization of long-range ferromagnetic order, and also
provides a complimentary limit to Kondo systems. The
interplay between itinerant carriers in a partially filled
band and the localized moments is conventionally stud-
ied within a diluted ferromagnetic Kondo lattice model
(FKLM), wherein −JSI .σI represents the exchange in-
teraction between the localized magnetic impurity spin
SI and the itinerant electron spin σI .

Recently, finite-temperature spin dynamics due to
thermal spin-wave excitations has been studied in
Ga1−xMnxAs samples with different Mn content (thick-
ness about 50nm, Mn content ranging from 2% to

6%) using SQUID (superconducting quantum interfer-
ence device) magnetization measurements.23 The tem-
perature dependence of (low-field) spontaneous mag-
netization shows nearly linear fall off, similar to ear-
lier results exhibiting even a distinct concave behaviour
for unannealed samples,3,4 possibly resulting from spin
re-orientation transitions due to temperature-dependent
magnetic anisotropies.24 However, the spontaneous mag-
netization obtained using linear extrapolation from a 0.3-
0.4 T magnetic field to overcome the anisotropy fields,
discussed earlier for epitaxial ultra-thin Fe and FeCo
films,25 is found to be well described by the Bloch form
M(T ) = M0(1 − BT 3/2), with a spin-wave parameter
B ∼ 1−3×10−3 K−2/3 which is about two orders of mag-
nitude higher than for Fe and FeCo films. This large dif-
ference cannot be attributed only to a reduced exchange
interaction. Post-growth annealing has been shown to
significantly increase Tc, possibly due to enhancement of
carrier concentration resulting from decrease of Mn inter-
stitial concentration.4 For a 50nm sample with 6% Mn, a
decrease in B from 2.7×10−3 K−2/3 to 1.4×10−3 K−2/3

has also been obtained upon annealing,23 with a corre-
sponding increase in the spin-wave stiffness constant D
from 53 meVÅ2 to 71 meVÅ2, which is of same order
of magnitude as obtained from magnetic Kerr measure-
ments using pump-probe setup of standing spin waves in
ferromagnetic Ga1−xMnxAs thin films.26

In view of these recent findings of strong thermal de-
cay of magnetization in DMS systems, in this paper
we investigate the interplay of disorder and compet-
ing interactions on magnon excitations in the diluted
FKLM. We also study finite-temperature spin dynamics
within a locally self-consistent magnon renormalization
scheme, equivalent to a site-dependent Tyablikov decou-
pling (local RPA), and present the first site-dependent
calculations for local impurity magnetization by explic-



2

itly incorporating the spatial feature of magnon states.
As we shall see, the disorder-induced formation of low-
and high-energy localized magnon modes, corresponding
to weakly- and strongly-coupled spins respectively, re-
sults in a variety of interesting spin-dynamics behaviour,
such as concave magnetization behaviour due to domi-
nant nearly-paramagnetic contribution of weakly-coupled
spins and an enhancement in Tc due to strong local cor-
relations in impurity-spin clusters.

Within our non-perturbative approach, finite exchange
interaction, impurity concentration, and disorder are
treated on an equal footing. Impurity positional disorder
is treated exactly by considering explicit realizations on
finite-size systems and averaging over sufficiently large
number of configurations to obtain statistically reliable
results.

Magnon excitations provide a composite measure of
the carrier-induced spin couplings in the collinear ferro-
magnetic state, with negative-energy modes signalling in-
stability due to competing antiferromagnetic (AF) spin
interactions. Magnon properties have been studied as
function of electron density n in the conduction band
and the spin-fermion coupling J within the concen-
trated FKLM (having a magnetic impurity at every lat-
tice site) in the context of heavy fermion materials,27

ferromagnetic metals Gd, Tb, Dy, doped EuX28 and
manganites.29–32 In the context of DMS, magnon prop-
erties have been studied earlier in the random phase
approximation (RPA) for the impurity-band model10

and for the diluted Hubbard model19,20 where disor-
der was treated exactly within finite-size numerical stud-
ies, and for the diluted FKLM within the virtual crys-
tal approximation (VCA) where a uniform impurity-
induced Zeeman splitting of the carrier spin bands
is assumed,9 within the coherent potential approxi-
mation (CPA),12,33 and also for ordered impurity ar-
rangements to make quantitative comparisons with dif-
ferent approximations.34 Magnon spectrum and tran-
sition temperature have also been obtained recently
for Ga1−xMnxAs and Ga1−xMnxN in terms of effec-
tive Heisenberg models with realistic exchange cou-
plings, obtained recently from first-principle calculations
as well.35,36

The organization of this paper is as follows. The RPA-
level theory for magnon excitations in real space is de-
rived in section II for a general fermion Hamiltonian,
and the Goldstone-mode behaviour expected from spin-
rotation symmetry is explicitly verified. Results for the
diluted ferromagnetic Kondo lattice model are then dis-
cussed in Section III, with finite-temperature spin dy-
namics introduced in section IV. Conclusions are pre-
sented in section V.

II. MAGNON EXCITATIONS

Magnons represent transverse spin fluctuations about
the spontaneously broken-symmetry state and consti-

tute gapless, low-energy excitations for magnetic sys-
tems possessing continuous spin-rotational symmetry. At
low temperature, magnons therefore play an important
role in diverse macroscopic properties such as existence
of long-range order, magnitude and temperature depen-
dence of the order parameter, magnetic transition tem-
perature, spin correlations etc. In the following we con-
sider finite temperature T , and obtain magnon excita-
tions at the RPA level where magnons interactions are
neglected.

We consider the Kondo lattice model

H = H0 −
J

2

∑

I

SI .σI (1)

where H0 represents the free-fermion part consisting gen-
erally of hopping and on-site energy terms, and the sec-
ond term represents the exchange coupling between im-
purity spins SI and fermion spins σI/2 at impurity sites
I. The analysis presented below is independent of details
of H0, for which several cases of interest including dilu-
tion, hopping disorder, potential disorder, and multiple
bands can be considered.

Applying the approximate Holstein-Primakoff trans-
formation from the spin-lowering (S−

I ) and spin-raising

(S+
I ) operators to boson (magnon) creation and annihi-

lation operators b†I and bI ,

S+
I = bI

√

2SI

S−
I = b†I

√

2SI

Sz
I = SI − b†IbI (2)

the Kondo lattice Hamiltonian reduces to

H = H0

−J
2

∑

I

[√
2SI

2

(

bIσ
−
I + b†Iσ

+
I

)

+
(

SI − b†IbI

)

σz
I

]

,(3)

where σ±
I ≡ σx

I ± iσy
I and the ”spin quantum num-

bers” SI ≡ 〈Sz
I 〉MF refer to finite-temperature magneti-

zations obtained self consistently in the mean-field state.
The above approximate transformation neglects quartic
magnon interaction terms of order 1/S.

Starting with a MF approximation, 〈b†I〉 = 〈bI〉 =

〈b†IbI〉 = 0, the Hamiltonian (3) decouples into a fermion
part with an impurity-field term

H0
fermion = H0 −

J

2

∑

I

SIσ
z
I (4)

and a local boson part

H0
boson =

J

2

∑

I

〈σz
I 〉b†IbI ≡

∑

I

EI b
†
IbI , (5)

representing the energy cost of a local spin deviation.
At the MF level, determination of impurity and fermion
magnetizations 〈Sz

I 〉 and 〈σz
I 〉 involves a self-consistent

solution of the coupled spin-fermion problem in terms of
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Brillouin and Fermi functions. In the zero-temperature
limit, as SI ≡ 〈Sz

I 〉MF = S, the impurity magnetic field
seen by fermions has same magnitude JS/2 on all sites,
however, the magnetic field J〈σz

I 〉MF/2 seen by impurity
spins remains non-uniform due to positional disorder.

Proceeding next to transverse spin fluctuations about
the MF state, we obtain the time-ordered magnon propa-
gator for the impurity spins in terms of the corresponding
boson propagator

G+−
IJ (t− t′) = i〈ΨG | T [S+

I (t)S−
J (t′)] | ΨG〉

=
√

2SI

(

i〈ΨG | T [bI(t)b
†
J (t′)] | ΨG〉

)

√

2SJ (6)

at the RPA level by summing over all bubble diagrams

+= + . . .G+−
IJ

I I II JJ

where the particle-hole bubble

[χ0(ω)]IJ = i

∫

dω′

2π
[G↑(ω′)]IJ [G↓(ω′ − ω)]JI

=
∑

l,m

ψI
l↑ψ

J
l↑ψ

I
m↓ψ

J
m↓

Em↓ − El↑ + ω
fl↑(1 − fm↓)

+
∑

l,m

ψI
l↑ψ

J
l↑ψ

I
m↓ψ

J
m↓

El↑ − Em↓ − ω
(1 − fl↑)fm↓ (7)

with Fermi functions fl↑ and fm↓ involves integrating
out the fermions (eigenvalues {Elσ} and wave functions
{ψlσ}) in the broken-symmetry state. It is the particle-
hole bubble [χ0(ω)]IJ which mediates the carrier-induced
impurity spin couplings in the ferromagnetic state, and
the oscillatory, long-range nature of the spin couplings is
effectively controlled by the fermion band filling and the
impurity field strength.

In terms of the site-diagonal zeroth-order magnon
propagator

[G0(ω)] =
[2SI ]

ω −H0
boson

=
∑

I

2SI

ω − E0
I + iη

|I〉〈I| (8)

the full magnon propagator can then be expressed as

[G+−(ω)] =
[G0(ω)]

1 + J2

4 [χ0(ω)][G0(ω)]

= [
√

2SI ]

(

1

ω − [H(ω)]

)

[
√

2SJ ] (9)

in terms of a boson ”Hamiltonian”

[H(ω)]IJ = EIδIJ − EIJ(ω) (10)

involving the boson on-site energy

EI ≡ J

2
〈σz

I 〉 (11)

and the boson hopping terms

EIJ(ω) ≡
√

2SI

(

J2

4
[χ0(ω)]IJ

)

√

2SJ (12)

associated with carrier-induced spin couplings JIJ =
(J2/4)[χ0(ω)]IJ . While dynamical effects are in principle
included in the magnon Hamiltonian [H(ω)], we find that
the ω dependence is sufficiently weak to be neglected,
so that the eigenvalues and eigenvectors of [H] directly
yield the (bare) magnon energies {ω0

l } and wave func-
tions {φ0

l }.
Equation (9) has exactly same structure as obtained

from the Tyablikov decoupling for an effective Heisen-
berg model with spin couplings JIJ = (J2/4)[χ0(ω)]IJ ,
and readily yields a locally self-consistent renormalized
magnon theory, as discussed in section IV.

In order to obtain a zero-energy Goldstone mode con-
sistent with spin-rotation symmetry, the energy cost of
creating a local spin deviation must be exactly offset by
the delocalization-induced energy gain, and the corre-
sponding condition

J

2
〈σz

I 〉 = EI =
∑

J

J2

4
[χ0(ω = 0)]IJ .2SJ (13)

is indeed exactly satisfied. This is easily verified in
the concentrated limit where translational symmetry re-
sults in plane-wave fermion states with band energies
Ekσ = ǫk − σJ〈Sz〉/2, and the particle-hole propagator
(7) simplifies to

χ0(q, ω = 0) =
∑

J

[χ0(ω = 0)]IJ

=
∑

k

fk↑(1 − fk↓)

J〈Sz〉
+

(1 − fk↑)fk↓
−J〈Sz〉

=
∑

k

(fk↑ − fk↓)

J〈Sz〉 =
〈σz〉
J〈Sz〉 (14)

which ensures that the required condition (13) is satisfied.
Quite generally, for a spin-rotationally-invariant system,
condition (13) can be easily derived from a perturba-
tive analysis for the transverse fermion-spin density in-
duced by small transverse impurity fields (corresponding
to small twist of the spin coordinate system), and then
comparing with that expected on symmetry grounds.

The dimension of the magnon Hamiltonian H is Nm,
the number of magnetic impurities per configuration.
From the Nm magnon energies {ω0

l } and wave functions
{φ0

l } we evaluate the magnon density of states and par-
ticiptation ratio (PR)

N(ω) =
1

π

1

Nm

∑

l

η

(ω − ω0
l )2 + η2

(η → 0)

PR = 1/
∑

I

(φ0I
l )4 , (15)

which together provide a complete picture of both spec-
tral and spatial features of magnon states. The participa-
tion ratio provides a measure of the number of impurity
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spins over which the magnon state is extended. Gener-
ally, if the normalized wave function φl corresponds to a
state with essentially non-zero amplitude φI

l ∼ 1/
√
n on

n sites, then PR∼ n. The participation ratio for magnon
states can thus range between Nm for a fully extended
magnon state and 1 for a site-localized magnon state.
The PR thus readily allows localized magnon states
(PR∼ 1) to be distinguished from extended magnon
states (PR∼ Nm).

We consider a simple cubic host lattice for simplicity,
with periodic boundary conditions. We have considered
system sizes L = 8, 10, 12, with the number of host lattice
sites N = L3 determining the dimension of the fermion
Hamiltonian (4) to be diagonalized. Explicit realizations
of random impurity arrangements are considered on the
host lattice, for the given number Nm. In all cases we
consider the saturated ferromagnetic state with a filled
spin-↑ band (N↑ = N) and doping in the spin-↓ band
which is pushed up by the impurity Zeeman field. The
impurity and carrier (hole) concentrations referred below
correspond to x = Nm/N and p = (N −N↓)/N , respec-
tively.

III. DILUTED KONDO LATTICE MODEL

Providing a minimal description of the exchange cou-
pling in DMS systems such as Ga1−xMnxAs between
Mn impurity and carrier spins, the diluted ferromagnetic
Kondo lattice model

H = t
∑

i,δ,σ

a†i,σai+δ,σ + ǫd
∑

I,σ

a†I,σaI,σ − J

2

∑

I

SI .σI (16)

represents Nm magnetic impurities placed randomly on
a fraction (I) of the N host sites (i). We consider a pos-
itive nearest-neighbour hopping t so that the host k = 0
state lies at the top of the valence band; doped carri-
ers (holes) go in long wavelength states, so that small-k
particle-hole processes near the Fermi energy are domi-
nant in the carrier-induced ferromagnetic spin couplings,
and therefore other details of the energy band are rela-
tively unimportant. In the following we set t = 1 as the
unit of energy scale. Also, as the temperature regime of
interest, set by the magnon energy scale, is very low com-
pared to the MF energy scale, in the following we have
only considered the T = 0 case which provides a good
approximation of the low-temperature MF state.

Fermions see an effective potential disorder due to di-
lution; both disorder and dilution cannot be changed in-
dependently. We have therefore included an impurity
on-site energy ǫd, which provides an effective control
of disorder independently of dilution. For negative ǫd,
the reduced impurity-site mean-field energy (ǫd + JS/2)
for spin-↓ fermions reduces the disparity between host
and impurity sites, resulting in lower effective disorder
(for ǫd = −JS/2, there is no disorder at MF level!).
The effects are quite dramatic on the magnon spec-
trum, showing significant decrease in the density of low-
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FIG. 1: Distribution of fermion spin densities on impurity
sites, showing significantly reduced densities in impurity-poor
regions relative to their average value ≈ p/x. Here J = 4, hole
doping p ≈ 4% and impurity concentration x ≈ 20%.

energy modes and hence enhanced stability of the carrier-
mediated ferromagnetic state.

The fermion spin polarization 〈σz
I 〉 typically shows sig-

nificant site variation as fermions tend to accumulate in
impurity-rich regions. Figure 1 shows the distribution of
fermion spin polarization on impurity sites, obtained by
diagonalizing the fermion Hamiltonian (4) on a N = 83

system for 50 configurations. Besides the broad peak
at the expected value of p/x corresponding to average
hole density per impurity site, there is an additional peak
at significantly reduced fermion spin polarization corre-
sponding to impurity-poor regions; this introduces a new
low-energy MF scale J〈σz

I 〉S/2 such that at comparable
or higher temperatures these weakly-coupled impurity
spins become nearly paramagnetic. However, as we shall
see, the magnon energy scale is an order of magnitude
smaller than even this low-energy MF scale, indicating
that the dominant spin dynamics is due to thermal exci-
tation of the collective magnetic excitations rather than
that described by the Brillouin function corresponding
to single-spin excitation energies within the MF theory.
A self-consistent finite-temperature mean-field analysis
is therefore not required, and the T = 0 description pro-
vides a good approximation of the low-temperature MF
state.

Figure 2 shows the configuration-averaged magnon
density of states (DOS) for two different hole doping
concentrations and for varying degree of dilution. Ini-
tially dilution is seen to essentially broaden the magnon
spectrum, but higher dilution results in significant soft-
ening of the collective excitations, with the magnon DOS
peak progressively shifting to lower energy. Furthermore,
this magnon softening is distinctly more pronounced at
lower hole doping, reflecting more effective competition
between longer-ranged spin couplings. In addition, new
structure appears at higher energy, particularly at higher
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FIG. 2: Magnon density of states for different impurity dilu-
tions for a N = 83 system with J = 4. The upper and lower
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tively. Inset shows (for x ≈ 20%) comparison of magnon DOS
for different system sizes N = L3.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16
N

(ω
)

ω

L=8
10
12

dilution, which is due to localized magnon states asso-
ciated with strongly-coupled spins in spin clusters, as
also reported in earlier studies.10,20 At still higher dilu-
tions (not shown), negative-energy states appear in the
magnon spectrum, indicating instability of the collinear
ferromagnetic state. The correlation between spectral
and spatial features of the magnon states is contained in
the PR plots shown in Figure 3 for the two doping levels.
In addition to the magnon softening with increasing di-
lution, the PR plots also show the increasing localization
of magnon states with dilution, especially for the high-
energy modes which are more likely to be localized over
the strongly-coupled cluster spins.

We note here that the magnon energy scale for ex-
tended modes, which essentially determines the spin dy-
namics in the ordered state due to thermal excitations
of magnons, is very low compared to the hopping energy
scale, as low as around ∼ 0.02 for the x ≈ 20% case in

 0

 0.5

 1

 1.5

 2

 2.5

 3

-0.01  0  0.01  0.02  0.03  0.04  0.05  0.06

lo
g 1

0P
R

ω

400

 0

 0.5

 1

 1.5

 2

 2.5

-0.01  0  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

lo
g 1

0P
R

ω

300

 0

 0.5

 1

 1.5

 2

 2.5

-0.02  0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

lo
g 1

0P
R

ω

200

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

-0.02  0  0.02 0.04 0.06 0.08  0.1  0.12 0.14 0.16

lo
g 1

0P
R

ω

100

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0  0.02  0.04  0.06  0.08  0.1  0.12
lo

g 1
0P

R
ω

500

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

lo
g 1

0P
R

ω

400

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

lo
g 1

0P
R

ω

300

 0

 0.5

 1

 1.5

 2

 2.5

-0.02  0  0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

lo
g 1

0P
R

ω

200

FIG. 3: Participation ratio for different impurity dilutions
for a N = 83 system with J = 4 and hole concentrations
p ≈ 4% and ≈ 11% in upper (four) and lower (four) panels,
respectively.

Fig. 2. On the other hand, corresponding to reduced
fermion polarization in impurity-poor regions, the low-
energy MF scale is J〈σz

I 〉S/2 ∼ 0.25. The nearly order-
of-magnitude separation between these two energy scales
implies, as discussed above, that the T = 0 calculations
provide a good description of the low-temperature MF
state.

Figure 4 shows effective control of impurity disorder
at fixed dilution and doping. Enhanced potential disor-
der with increasing J results in magnon softening (upper
panel), whereas negative ǫd effectively reduces disorder in
the doped spin-↓ band and results in magnon stiffening
(lower panel), indicating stabilization of the ferromag-
netic state and higher Tc.

Figure 5 shows the strong optimization of the tran-
sition temperature Tc with carrier concentration due to
the characteristic competition between increasing overall
magnitude of the carrier-induced spin couplings J2χ0

IJ

and the increasing rapidity of its oscillation. Here we
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have estimated Tc from the configuration average

1

Tc
=

〈

1

Nm

∑

l

1

ω0
l

〉

c

(17)

and taken a hole bandwidth (W = 12t = 10 eV) of the or-
der of that of GaAs. Also, we have taken x = 20% for the
impurity concentration (per unit cell for our sc lattice),
corresponding to 5% Mn in the fcc system Ga1−xMnxAs,
which has 4 Ga sites per unit cell, and therefore impurity
concentration 4x per unit cell. The peak at p/x ∼ 1/5
shows the importance of compensation in DMS systems,
and the calculated Tc is in good agreement with experi-
mental results for Ga1−xMnxAs.

The interplay of competing interactions and disorder
is highlighted in Figure 6, which shows a comparison of
magnon DOS and Tc for the ordered and disordered cases
at the same dilution x = 1/8. Here the ordered case cor-
responds to a superlattice arrangement of impurities on
alternate host lattice sites, studied earlier within a k-
space sublattice-basis representation.34 The low-energy
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FIG. 5: Variation of Tc with hole concentration p for a N =
103 system with J = 4, x = 20%, and carrier bandwidth
W = 12t = 10 eV, averaged over 50 configurations.
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for different dilutions (x ≈ 20%, 35%, 70%) and system sizes
(N = 123, 103, 83) while keeping the number of magnetic
states fixed. Here J = 4, W = 10eV, and p/x = 1/5. Also
shown is the conventional spin-wave-theory result (25).

part of the magnon spectrum, which corresponds to ex-
tended modes, is seen to be significantly softened in the
disordered case, resulting in substantially reduced Tc,
and simply reflects the reduced spin stiffness due to com-
peting interactions. The Tc result for the ordered case is
in close agreement with earlier k-space analysis in terms
of spin stiffness,34 providing additional check on the va-
lidity of finite-size Tc calculations.

IV. FINITE-TEMPERATURE SPIN DYNAMICS

In section III we saw that dilution-induced disorder re-
sults in a strong enhancement in the density of low-energy
magnons, with an appreciable fraction of localized modes
corresponding to weakly-coupled spins, as well as forma-
tion of impurity-spin clusters supporting localized high-
energy magnon modes. In order to quantitatively inves-
tigate the effect of these magnon features on the finite-
temperature spin dynamics, in this section we evaluate
the thermal reduction in magnetization due to magnon
excitations.

We first discuss a locally self-consistent magnon renor-
malization scheme for the determination of local magne-
tizations, which is equivalent to the site-dependent Tyab-
likov decoupling procedure (local RPA) for a Heisenberg
ferromagnet. We obtain the local magnetization from the
Callen formula

〈Sz
I 〉 =

(S − ΦI)(1 + ΦI)
2S+1 + (S + 1 + ΦI)Φ

2S+1
I

(1 + ΦI)2S+1 − Φ2S+1
I

(18)

for a quantum spin-S ferromagnet,38 where we have in-

 0
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FIG. 8: Distribution of local magnetization, showing qual-
itatively different spin dynamics for weakly- and strongly-
coupled spins in a N = 103 system with J = 4, x = 20%,
p ≈ 4%, and W = 10eV.

troduced site-dependent boson occupation numbers

ΦI =
1

Nm

∑

l

|φI
l |2

eβωl − 1
(19)

which explicitly involve the boson density (φI
l )

2. A
locally self-consistent magnon renormalization scheme
(in terms of the fixed FKLM spin couplings JIJ =
(J2/4)[χ0]IJ) is then obtained if the boson Hamiltonian
matrix elements (10-13) are self-consistently renormal-
ized

HIJ =
√

2〈Sz
I 〉

(

J2

4
[χ0]IJ

)

√

2〈Sz
J〉

HII =
∑

J 6=I

(

J2

4
[χ0]IJ

)

2〈Sz
J〉 (20)

in terms of the local magnetization 〈Sz
I 〉 instead of

the MF values. Together with H|φl〉 = ωl|φl〉, the
coupled equations (18-20) then self-consistently yield
the local magnetization 〈Sz

I 〉 for all sites. In the
translationally-symmetric case this yields the usual
momentum-independent magnon-energy renormalization
ωl = (〈Sz〉/S)ω0

l .
In the low-temperature regime, thermal magnon renor-

malization is negligible (〈Sz
I 〉 → S), and the bare (T = 0)

magnon energies ω0
l provide a good description of the

spin dynamics. We also have ΦI << 1, and the magne-
tization equation (18) reduces to the conventional spin-
wave-theory result for the site-averaged magnetization

〈Sz〉 = S − 1

Nm

∑

I

ΦI = S −
∫

dω
N(ω)

eβω − 1
, (21)

in terms of the bare magnon density of states N(ω). On
the other hand, in an intermediate-temperature regime
where kBT ≫ ω0

l for low-energy localized modes, then
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FIG. 9: Configuration-averaged magnetization within an ap-
proximate renormalization scheme involving the average bo-
son occupation number, for a N = 123 system with J = 4,
W = 10eV, x ≈ 20%, and p ≈ 4%, along with a fit with the
Bloch form S(1 − BT 3/2), with B = 0.6 × 10−3 K−2/3.

ΦI ∼ kBT/ω
0
l >> 1 and a nearly paramagnetic contri-

bution 〈Sz
I 〉 ∼ ω0

l /kBT is obtained to the local magne-
tization, highlighting the qualitatively different spin dy-
namics of the isolated, weakly-coupled spins.

Figure 7 shows the temperature-dependence of mag-
netization evaluated from (18) and (19) with the bare
(T = 0) magnon energies and wavefunctions and aver-
aged over all impurity sites and several (20) configura-
tions, for different dilutions (x ≈ 20%, 35%, 70%) and
fixed value of p/x = 1/5. Different host system sizes
N = L3 with L = 12, 10, 8 are taken so that the num-
ber of magnetic states per configuration remains same
(Nm = 350) in Eq. (19). The strong enhancement in
the thermal decay of magnetization with dilution reflects
the effect of the large enhancement in density of low-
energy magnetic excitations on the finite-temperature
spin dynamics. Also shown (for x ≈ 20%) is the conven-
tional spin-wave-theory result (21), which asymptotically
approaches the previous result in the low-temperature
regime, as expected.

While the distinctly concave behaviour at higher tem-
perature in the diluted case (Fig. 7, x = 20%) is in
itself not conclusive evidence for nearly paramagnetic
behaviour of weakly-coupled spins, as similar behaviour
would be obtained even for a translationally-symmetric
system in a high-temperature (kBT ≫ ω0

l ) regime, the
distribution of local magnetization 〈Sz

I 〉 for a single con-
figuration, clearly shows (Fig. 8) the qualitatively differ-
ent spin dynamics for weakly- and strongly-coupled spins
for the same magnon spectrum, thus highlighting the role
of the spatial character of magnon states. The wide range
of behaviour for different spins, and therefore the differ-
ent local environments reflects the degree of complexity
in a fully self-consistent magnon renormalization theory.

We next include magnon renormalization within an

 0
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FIG. 10: Substantial enhancement in Tc due to spin clustering
when the site-dependence of local magnon occupation number
and magnetization is included, for a N = 103 system (single
configuration), with J = 4, W = 10eV, x = 20%, and p ≈ 4%.

approximate scheme,35 suitable for the low-temperature
regime where 〈Sz

I 〉 ∼ S for all sites. Here the average
magnetization 〈Sz〉 is self-consistently calculated from an
equation similar to (18) in terms of the configuration- and
site-averaged boson occupation number

Φ ≡ 〈ΦI〉 =

〈

1

Nm

∑

l

1

eβ(〈Sz〉/S)ω0

l − 1

〉

c

(22)

where the bare (T = 0) magnon energies ω0
l are uni-

formly renormalized by the factor 〈Sz〉/S, as in the stan-
dard Tyablikov theory. Figure 9 shows the temperature
dependence of average magnetization obtained for sev-
eral (Nc = 20) configurations of a N = 123 system with
J = 4, x ≈ 20%, and p ≈ 4%. As expected, in the low-
temperature regime where 〈Sz〉 → S and ΦI << 1, the
result approaches the previous (unrenormalized) result.
Interestingly, the low-temperature behaviour of magneti-
zation fits well with the Bloch form S(1 − BT 3/2), with
B = 0.6 × 10−3 K−2/3, which is of same order of mag-
nitude (1.4×10−3 K−2/3) as obtained in squid magne-
tization measurements of an annealed 50nm sample of
Ga1−xMnxAs with 6% Mn concentration.23.

Dealing only with the average magnon occupation
number, the above approximation does not incorporate
the spatial segregation of magnon modes, particularly
of the localization of high-energy modes over strongly-
coupled cluster spins. Whereas, strong local correlations
and high disordering temperature in these spin clusters
should generally enhance long-range ordering and Tc, and
therefore a quantitative analysis of this spin clustering is
of interest. Localization of high-energy magnon modes
over impurity clusters implies that cluster spins have rel-
atively smaller participation in the low-energy modes, re-
sulting in smaller magnon occupation number ΦI and
higher local magnetization 〈Sz

I 〉 on cluster sites at low
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temperature. Fig. 10 shows the substantial enhance-
ment in Tc resulting from including the site-dependence
of ΦI and 〈Sz

I 〉, evaluated self-consistently from (18) and
(19), but with a uniform magnon-energy renormalization
ωl = (〈Sz〉/S)ω0

l in (19) in terms of the average magne-
tization 〈Sz〉 = (1/Nm)

∑

I〈Sz
I 〉. Also shown is the re-

sult of the fully self-consistent magnon renormalization
scheme (18-20), where the renormalized magnon energies
ωl and wave functions φl are obtained by diagonalizing
the renormalized magnon Hamiltonian (20) which is up-
dated at every step.

V. CONCLUSIONS

The exact treatment of disorder in our finite-size cal-
culations allowed for a quantitative investigation of the
interplay of disorder and competing interactions in the
carrier-induced ferromagnetic state of the diluted fer-
romagnetic Kondo lattice model. Quantitative mea-
sures of the competition between impurity spin cou-
plings, stability of the ferromagnetic state, and the mag-
netic transition temperature could be obtained from our
real-space analysis of magnon excitations, with the esti-
mated Tc in good agreement with experimental results for
Ga1−xMnxAs for corresponding impurity concentration,
hole bandwidth, and compensation. Finite-temperature
spin dynamics was studied within a locally self-consistent
magnon renormalization scheme, equivalent to a site-
dependent Tyablikov decoupling (local RPA), to investi-
gate the role of magnon localization over isolated, weakly-
coupled spins and over strongly-coupled cluster spins.

The strong magnon softening observed with dilu-
tion reflects increasingly effective competition between
carrier-induced spin couplings, especially at lower hole
doping where the couplings are longer-ranged. Indeed,
the instability of the collinear ferromagnetic state at
high dilution, as signalled by appearance of negative-
energy magnon modes, indicates strong competition be-
tween ferromagnetic and antiferromagnetic spin cou-
plings. Highlighting the importance of compensation in
DMS systems, the strong optimization of Tc with hole
doping at p/x << 1 stems from the competition between
increasing overall magnitude and increasing rapidity of
oscillation of the carrier-induced spin couplings. Com-
parison of the ordered and disordered cases for exactly
same dilution, with significant magnon softening and low-
ering of Tc in the disordered case, explicitly demonstrates
the interplay of disorder and competing interactions in
DMS systems. The relatively milder magnon softening
and robustness of ferromagnetic state obtained for purely
potential disorder39 serves to highlight the greater de-
gree of frustration due to positional disorder in diluted
systems.

The large enhancement in density of low-energy mag-
netic excitations arising from competing interactions and
disorder is responsible for the strong thermal decay of
magnetization at high dilution. While the distribution

of local magnetization clearly exhibits spin-dynamics be-
haviour of both weakly- and strongly-coupled spins, the
low-temperature behaviour of lattice-averaged magneti-
zation was found to be dominated by low-energy ex-
tended magnon states, and fitted well with the Bloch
form M0(1−BT 3/2), with B of the same order of magni-
tude as obtained in recent squid magnetization measure-
ments on Ga1−xMnxAs samples.23

The enhancement in ferromagnetism due to strong lo-
cal correlations in spin clusters is captured in the lo-
cally self-consistent magnon renormalization scheme, as
reflected in the substantial enhancement in Tc obtained
on including the site dependence of magnon occupa-
tion numbers. Furthermore, applied to the FKLM with
a small fraction of weakly-coupled spins,39 the scheme
highlighted both the dominant nearly-paramagnetic spin
dynamics of weakly-coupled spins in the low-temperature
regime, and the dominant spin dynamics of bulk spins
near Tc. Thus a wide range of spin-dynamics behaviour
involving different local environments can be studied
practically within the self-consistent magnon renormal-
ization scheme.

Finally, we mention the outstanding and interesting
issue of fermion-sector renormalization, in particular of
the carrier-induced spin couplings due to quantum and
thermal corrections to the bare particle-hole propaga-
tor [χ0(ω)]. In the VCA-based approaches, the effec-
tive impurity field seen by fermions is taken to vanish
as T → Tc, yielding RKKY-type spin couplings. How-
ever, the large separation between moment-melting and
moment-disordering temperatures implies presence of ap-
preciable local moments even near Tc, so that fermions
should continue to see impurity fields due to the slowly-
fluctuating, locally-ordered impurity moments. Indeed,
the splitting of fermion bands near Tc even for rather
moderate couplings (J/W ∼ 0.2), obtained within dy-
namical self-energy studies of the concentrated FKLM,40

is precisely due to presence of the slowly-fluctuating im-
purity fields. It will be of interest to examine both quan-
tum and thermal corrections to spin couplings due to self-
energy and vertex corrections in [χ0(ω)] within a spin-
rotationally invariant scheme which preserves the Gold-
stone mode. Studied recently for the ferromagnetic state
of the Hubbard model,37 the net quantum correction can
be essentially understood in terms of an exchange-energy
enhancement due to fermion spectral-weight transfer.
Preliminary calculation of spectral-weight transfer for the
FKLM indicates a suppresion by the factor 1/S, suggest-
ing relatively smaller quantum corrections for large spin
quantum number S.
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15 C. Timm, F. Schäfer, and F. von Oppen, Phys. Rev. Lett.
89, 137201 (2002); C. Timm and F. von Oppen, J. Super-
cond. 16 23 (2003); cond-mat/0209055 (2002).

16 M. P. Kennett, M. Berciu and R. N. Bhatt, Phys. Rev. B
65, 115308 (2002); ibid 66, 045207 (2002).

17 G. Alvarez, M. Mayr, and E. Dagotto, Phys. Rev. Lett.
89, 277202 (2002); G. Alvarez and E. Dagotto, Phys. Rev.
B 68, 045202 (2003).

18 S. Das Sarma, E. H. Hwang, and A. Kaminski, Phys. Rev.
B 67, 155201 (2003); D. J. Priour, Jr., E. H. Hwang, and
S. Das Sarma, Phys. Rev. Lett. 92, 117201 (2004).

19 A. Singh, A. Datta, S. K. Das, and V. A. Singh, Phys. Rev.
B 68, 235208 (2003).

20 A. Singh, cond-mat/0307009 (2003).
21 R. N. Bhatt, M. Berciu, M. P. Kennet, and X. Wan, Jour.

of Superconductivity INM 15, 71 (2002).
22 C. Timm, J. Phys.: Condens. Matter 15, R1865 (2003).
23 M. Sperl, J. Sadowski, R. Gareev, W. Wegscheider, D.

Weiss, and G. Bayreuther, to be published.
24 M. Sawicki, K.-Y. Wang, K. W. Edmonds, R. P. Campion,

C. R. Staddon, N. R. S. Farley, C. T. Foxon, E. Papis, E.
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