425 research outputs found

    Research on atmospheric volcanic emissions: An overview

    Get PDF
    The project Research on Atmospheric Volcanic Emissions is a unique effort by NASA and university scientists to investigate the detailed chemical nature of plumes from volcanic eruptions. The major goals of the project are to: 1) understand the impact major eruptions will have on atmospheric chemistry processes, 2) understand the importance of volcanic emissions in the atmospheric geochemical cycles of selected species, 3) use knowledge of the plume chemical composition to diagnose and predict magmatic processes. Project RAVE\u27S first mission used the NASA Lockheed Orion P-3 outfitted with equipment to measure concentrations of the gases SO2, OCS, H2S, CS2, NO, O3and trace elements in particles in Mt. St. Helens\u27 plume on September 22, 1980. Measurements of SO2 column densities in the plume permitted calculations of SO2 fluxes. This article is an overview of the first experimental design factors and performance of the initial RAVE experiment

    Sea surface temperature changes in the southern California borderlands during the last glacial-interglacial cycle

    Get PDF
    A variety of evidence suggests that average sea surface temperatures (SSTs) during the last glacial maximum in the California Borderlands region were significantly colder than during the Holocene. Planktonic foraminiferal δ18O evidence and average SST estimates derived by the modern analog technique indicate that temperatures were 6°-10°C cooler during the last glacial relative to the present. The glacial plankton assemblage is dominated by the planktonic foraminifer Neogloboquadrina pachyderma (sinistral coiling) and the coccolith Coccolithus pelagicus, both of which are currently restricted to subpolar regions of the North Pacific. The glacial-interglacial average SST change determined in this study is considerably larger than the 2°C change estimated by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981]. We propose that a strengthened California Current flow was associated with the advance of subpolar surface waters into the Borderlands region during the last glacial

    Pressure-Regulated Volume Control vs Volume Control Ventilation in Infants After Surgery for Congenital Heart Disease

    Full text link
    The objective of this investigation was to compare how two modes of positive pressure ventilation affect cardiac output, airway pressures, oxygenation, and carbon dioxide removal in children with congenital heart disease in the immediate postoperative period. The investigation used a one group pretest–post-test study design and was performed in the pediatric cardiac intensive care unit in a university-affiliated children's hospital. Nine infants were enrolled immediately after repair of tetralogy of Fallot (2) or atrioventricular septal defects (7) with mean weight = 5.5 kg (4.2–7.3 kg). Children were admitted to the pediatric cardiothoracic intensive care unit after complete surgical repair of their cardiac defect and stabilized on a Siemen's Servo 300 ventilator in volume control mode (VCV1) (volume-targeted ventilation with a square flow wave pattern). Tidal volume was set at 15 cc/kg (total). Hemodynamic parameters, airway pressures and ventilator settings, and an arterial blood gas were measured. Patients were then changed to pressure-regulated volume control mode (PRVC) (volume-targeted ventilation with decelerating flow wave pattern) with the tidal volume set as before. Measurements were repeated after 30 minutes. Patients were then returned to volume control mode (VCV2) and final measurements made after 30 minutes. The measurements and results are as follows:Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42385/1/246-22-3-233_10220233.pd

    Dissipative Chaos in Semiconductor Superlattices

    Full text link
    We consider the motion of ballistic electrons in a miniband of a semiconductor superlattice (SSL) under the influence of an external, time-periodic electric field. We use the semi-classical balance-equation approach which incorporates elastic and inelastic scattering (as dissipation) and the self-consistent field generated by the electron motion. The coupling of electrons in the miniband to the self-consistent field produces a cooperative nonlinear oscillatory mode which, when interacting with the oscillatory external field and the intrinsic Bloch-type oscillatory mode, can lead to complicated dynamics, including dissipative chaos. For a range of values of the dissipation parameters we determine the regions in the amplitude-frequency plane of the external field in which chaos can occur. Our results suggest that for terahertz external fields of the amplitudes achieved by present-day free electron lasers, chaos may be observable in SSLs. We clarify the nature of this novel nonlinear dynamics in the superlattice-external field system by exploring analogies to the Dicke model of an ensemble of two-level atoms coupled with a resonant cavity field and to Josephson junctions.Comment: 33 pages, 8 figure

    Atmospheric sulfur cycling in the southeastern Pacific – longitudinal distribution, vertical profile, and diel variability observed during VOCALS-REx

    Get PDF
    Dimethylsulfide (DMS) emitted from the ocean is a biogenic precursor gas for sulfur dioxide (SO<sub>2</sub>) and non-sea-salt sulfate aerosols (SO<sub>4</sub><sup>2−</sup>). During the VAMOS-Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in 2008, multiple instrumented platforms were deployed in the Southeastern Pacific (SEP) off the coast of Chile and Peru to study the linkage between aerosols and stratocumulus clouds. We present here observations from the NOAA Ship <i>Ronald H. Brown</i> and the NSF/NCAR C-130 aircraft along ~20° S from the coast (70° W) to a remote marine atmosphere (85° W). While SO<sub>4</sub><sup>2−</sup> and SO<sub>2</sub> concentrations were distinctly elevated above background levels in the coastal marine boundary layer (MBL) due to anthropogenic influence (~800 and 80 pptv, respectively), their concentrations rapidly decreased west of 78° W (~100 and 25 pptv). In the remote region, entrainment from the free troposphere (FT) increased MBL SO<sub>2</sub> burden at a rate of 0.05 ± 0.02 μmoles m<sup>−2</sup> day<sup>−1</sup> and diluted MBL SO<sub>4</sub><sup>2</sup> burden at a rate of 0.5 ± 0.3 μmoles m<sup>−2</sup> day<sup>−1</sup>, while the sea-to-air DMS flux (3.8 ± 0.4 μmoles m<sup>−2</sup> day<sup>−1</sup>) remained the predominant source of sulfur mass to the MBL. In-cloud oxidation was found to be the most important mechanism for SO<sub>2</sub> removal and in situ SO<sub>4</sub><sup>2−</sup> production. Surface SO<sub>4</sub><sup>2−</sup> concentration in the remote MBL displayed pronounced diel variability, increasing rapidly in the first few hours after sunset and decaying for the rest of the day. We theorize that the increase in SO<sub>4</sub><sup>2−</sup> was due to nighttime recoupling of the MBL that mixed down cloud-processed air, while decoupling and sporadic precipitation scavenging were responsible for the daytime decline in SO<sub>4</sub><sup>2−</sup>

    Late Quaternary evolution of alluvial fans in the Playa, El Fresnal region, northern Chihuahua desert, Mexico: Palaeoclimatic implications

    Get PDF
    The Playa El Fresnal area is a tilted terrane characteristic of an extensional basin. It is a half graben/tilted-block system with a playa-lake on the basin floor flanked by piedmonts covered by alluvial fans. Structural heterogeneities within normal fault zones influenced the geomorphic expression of the uplifted footwall blocks of associated volcanism, and the downdropped hanging wall. The footwall area is the main sediment source, but the hanging wall-derived sediments are more extensive. The ancient alluvial fans are in the distal part, whereas the hanging-wall sediments are located in the apex area. A geomorphic analysis of the relative topographic position of the alluvial fans, degree of dissection of the original surfaces, general sedimentology (facies description), and stream channel network type, highlights the importance of climatic change in interpreting alluvial-fan surfaces. Three generations of alluvial fans were identified on the footwall and hanging wall slopes. They were formed during the late Quaternary climatic shift, consistent with the main climatic changes recorded in the paleolake stratig-raphy of northern Mexico and the American Southwest. These alluvial fans consist mainly of debris-flow deposits from flash floods, probably triggered by a change from relatively moist to arid conditions. They contrast with the typically lower-flow-regime of thick-bedded, cross-bedded, and lenticular channel facies, and associated floodplain sequences of rivers

    Late Quaternary evolution of alluvial fans in the Playa, El Fresnal region, northern Chihuahua desert, Mexico: Palaeoclimatic implications

    Get PDF
    The Playa El Fresnal area is a tilted terrane characteristic of an extensional basin. It is a half graben/tilted-block system with a playa-lake on the basin floor flanked by piedmonts covered by alluvial fans. Structural heterogeneities within normal fault zones influenced the geomorphic expression of the uplifted footwall blocks of associated volcanism, and the downdropped hanging wall. The footwall area is the main sediment source, but the hanging wall-derived sediments are more extensive. The ancient alluvial fans are in the distal part, whereas the hanging-wall sediments are located in the apex area. A geomorphic analysis of the relative topographic position of the alluvial fans, degree of dissection of the original surfaces, general sedimentology (facies description), and stream channel network type, highlights the importance of climatic change in interpreting alluvial-fan surfaces. Three generations of alluvial fans were identified on the footwall and hanging wall slopes. They were formed during the late Quaternary climatic shift, consistent with the main climatic changes recorded in the paleolake stratig-raphy of northern Mexico and the American Southwest. These alluvial fans consist mainly of debris-flow deposits from flash floods, probably triggered by a change from relatively moist to arid conditions. They contrast with the typically lower-flow-regime of thick-bedded, cross-bedded, and lenticular channel facies, and associated floodplain sequences of rivers

    Estimating population size, density and dynamics of Pre-Pottery Neolithic villages in the central and southern Levant: an analysis of Beidha, southern Jordan

    Get PDF
    The Pre-Pottery Neolithic (PPN) of the central and southern Levant played an integral role in the Neolithic Demographic Transition (NDT) from mobile hunter-gatherer to village-based, agro-pastoralist societies. An understanding of population dynamics is essential for reconstructing the trajectories of these early village societies. However, few investigations have produced absolute estimates of population parameters for these villages and those which have base estimates on a limited methodological framework. This research examines the methodological and theoretical basis for existing estimates, and explores a range of methodologies in order to derive more empirically-robust demographic data. Results reveal that commonly utilized methodologies and population density coefficients employed for estimating PPN village populations require re-evaluation. This article presents the application of methodologies to the PPNB site of Beidha in southern Jordan
    • …
    corecore