266 research outputs found

    The Natural Logarithm on Time Scales

    Full text link
    We define an appropriate logarithm function on time scales and present its main properties. This gives answer to a question posed by M. Bohner in [J. Difference Equ. Appl. {\bf 11} (2005), no. 15, 1305--1306].Comment: 6 page

    Control of light transmission through opaque scattering media in space and time

    Get PDF
    We report the first experimental demonstration of combined spatial and temporal control of light trajectories through opaque media. This control is achieved by solely manipulating spatial degrees of freedom of the incident wavefront. As an application, we demonstrate that the present approach is capable to form bandwidth-limited ultrashort pulses from the otherwise randomly transmitted light with a controllable interaction time of the pulses with the medium. Our approach provides a new tool for fundamental studies of light propagation in complex media and has potential for applications for coherent control, sensing and imaging in nano- and biophotonics

    Delta-Nabla Optimal Control Problems

    Full text link
    We present a unified treatment to control problems on an arbitrary time scale by introducing the study of forward-backward optimal control problems. Necessary optimality conditions for delta-nabla isoperimetric problems are proved, and previous results in the literature obtained as particular cases. As an application of the results of the paper we give necessary and sufficient Pareto optimality conditions for delta-nabla bi-objective optimal control problems.Comment: Preprint version of an article submitted 28-Nov-2009; revised 02-Jul-2010; accepted 20-Jul-2010; for publication in Journal of Vibration and Contro

    R-matrix approach to integrable systems on time scales

    Get PDF
    A general unifying framework for integrable soliton-like systems on time scales is introduced. The RR-matrix formalism is applied to the algebra of δ\delta-differential operators in terms of which one can construct infinite hierarchy of commuting vector fields. The theory is illustrated by two infinite-field integrable hierarchies on time scales which are difference counterparts of KP and mKP. The difference counterparts of AKNS and Kaup-Broer soliton systems are constructed as related finite-field restrictions.Comment: 21 page

    Computing covariant vectors, Lyapunov vectors, Oseledets vectors, and dichotomy projectors: a comparative numerical study

    Full text link
    Covariant vectors, Lyapunov vectors, or Oseledets vectors are increasingly being used for a variety of model analyses in areas such as partial differential equations, nonautonomous differentiable dynamical systems, and random dynamical systems. These vectors identify spatially varying directions of specific asymptotic growth rates and obey equivariance principles. In recent years new computational methods for approximating Oseledets vectors have been developed, motivated by increasing model complexity and greater demands for accuracy. In this numerical study we introduce two new approaches based on singular value decomposition and exponential dichotomies and comparatively review and improve two recent popular approaches of Ginelli et al. (2007) and Wolfe and Samelson (2007). We compare the performance of the four approaches via three case studies with very different dynamics in terms of symmetry, spectral separation, and dimension. We also investigate which methods perform well with limited data

    On the critical level-curvature distribution

    Full text link
    The parametric motion of energy levels for non-interacting electrons at the Anderson localization critical point is studied by computing the energy level-curvatures for a quasiperiodic ring with twisted boundary conditions. We find a critical distribution which has the universal random matrix theory form Pˉ(K)K3{\bar P}(K)\sim |K|^{-3} for large level-curvatures K|K| corresponding to quantum diffusion, although overall it is close to approximate log-normal statistics corresponding to localization. The obtained hybrid distribution resembles the critical distribution of the disordered Anderson model and makes a connection to recent experimental data.Comment: 4 pages, 3 figure

    Correlation function of weakly interacting bosons in a disordered lattice

    Full text link
    One of the most important issues in disordered systems is the interplay of the disorder and repulsive interactions. Several recent experimental advances on this topic have been made with ultracold atoms, in particular the observation of Anderson localization, and the realization of the disordered Bose-Hubbard model. There are however still questions as to how to differentiate the complex insulating phases resulting from this interplay, and how to measure the size of the superfluid fragments that these phases entail. It has been suggested that the correlation function of such a system can give new insights, but so far little experimental investigation has been performed. Here, we show the first experimental analysis of the correlation function for a weakly interacting, bosonic system in a quasiperiodic lattice. We observe an increase in the correlation length as well as a change in shape of the correlation function in the delocalization crossover from Anderson glass to coherent, extended state. In between, the experiment indicates the formation of progressively larger coherent fragments, consistent with a fragmented BEC, or Bose glass.Comment: 16 pages, 8 figure

    Effect of uniaxial stress on ferroelectric behavior of (Bi1/2Na1/2)TiO3-based lead-free piezoelectric ceramics

    Get PDF
    Prior studies have shown that a field-induced ferroelectricity in ceramics with general chemical formula (1-x-y) (Bi1/2 Na1/2) TiO3 -x BaTiO3 -y (K0.5 Na0.5) NbO3 and a very low remanent strain can produce very large piezoelectric strains. Here we show that both the longitudinal and transverse strains gradually change with applied electric fields even during the transition from the nonferroelectric to the ferroelectric state, in contrast to known Pb-containing antiferroelectrics. Hence, the volume change and, in turn, the phase transition can be affected using uniaxial compressive stresses, and the effect on ferroelectricity can thus be assessed. It is found that the 0.94 (Bi1/2 Na1/2) TiO3 -0.05 BaTiO3 -0.01 (K0.5 Na0.5) NbO3 ceramic (largely ferroelectric), with a rhombohedral R3c symmetry, displays large ferroelectric domains, significant ferroelastic deformation, and large remanent electrical polarizations even at a 250 MPa compressive stress. In comparison, the 0.91 (Bi1/2 Na1/2) TiO3 -0.07 BaTiO3 -0.02 (K0.5 Na0.5) NbO3 ceramic (largely nonferroelectric) possesses characteristics of a relaxor ferroelectric ceramic, including a pseudocubic structure, limited ferroelastic deformation, and low remanent polarization. The results are discussed with respect of the proposed antiferroelectric nature of the nonferroelectric state.open291
    corecore