104 research outputs found

    Yersiniabactin Reduces the Respiratory Oxidative Stress Response of Innate Immune Cells

    Get PDF
    Enterobacteriaceae that contain the High Pathogenicity Island (HPI), which encodes the siderophore yersiniabactin, display increased virulence. This increased virulence may be explained by the increased iron scavenging of the bacteria, which would both enhance bacterial growth and limit the availability of iron to cells of the innate immune system, which require iron to catalyze the Haber-Weiss reaction that produces hydroxyl radicals. In this study, we show that yersiniabactin increases bacterial growth when iron-saturated lactoferrin is the main iron source. This suggests that yersiniabactin provides bacteria with additional iron from saturated lactoferrin during infection. Furthermore, the production of ROS by polymorphonuclear leukocytes, monocytes, and a mouse macrophage cell line is blocked by yersiniabactin, as yersiniabactin reduces iron availability to the cells. Importantly, iron functions as a catalyst during the Haber-Weiss reaction, which generates hydroxyl radicals. While the physiologic role of the Haber-Weiss reaction in the production of hydroxyl radicals has been controversial, the siderophores yersiniabactin, aerobactin, and deferoxamine and the iron-chelator deferiprone also reduce ROS production in activated innate immune cells. This suggests that this reaction takes place under physiological conditions. Of the tested iron chelators, yersiniabactin was the most effective in reducing the ROS production in the tested innate immune cells. The likely decreased bacterial killing by innate immune cells resulting from the reduced production of hydroxyl radicals may explain why the HPI-containing Enterobacteriaceae are more virulent. This model centered on the reduced killing capacity of innate immune cells, which is indirectly caused by yersiniabactin, is in agreement with the observation that the highly pathogenic group of Yersinia is more lethal than the weakly pathogenic and the non-pathogenic group

    Genomic Diversity within the Enterobacter cloacae Complex

    Get PDF
    Background: Isolates of the Enterobacter cloacae complex have been increasingly isolated as nosocomial pathogens, but phenotypic identification of the E. cloacae complex is unreliable and irreproducible. Identification of species based on currently available genotyping tools is already superior to phenotypic identification, but the taxonomy of isolates belonging to this complex is cumbersome. Methodolgy/Principal Findings: This study shows that multilocus sequence analysis and comparative genomic hybridization based on a mixed genome array is a powerful method for studying species assignment within the E. cloacae complex. The E. cloacae complex is shown to be evolutionarily divided into two clades that are genetically distinct from each other. The younger first clade is genetically more homogenous, contains the Enterobacter hormaechei species and is the most frequently cultured Enterobacter species in hospitals. The second and older clade consists of several (sub)species that are genetically more heterogonous. Genetic markers were identified that could discriminate between the two clades and cluster 1. Conclusions/Significance: Based on genomic differences it is concluded that some previously defined (clonal and heterogenic) (sub)species of the E. cloacae complex have to be redefined because of disagreements with known or proposed nomenclature. However, further improved identification of the redefined species will be possible based on novel markers presented here. © 2008 Paauw et al. Chemicals / CAS: Bacterial Proteins; DNA, Bacteria

    International multicenter evaluation of the DiversiLab bacterial typing system for Escherichia coli and Klebsiella spp.

    Get PDF
    Successful multidrug-resistant clones are increasing in prevalence globally, which makes the ability to identify these clones urgent. However, adequate, easy-to-perform, and reproducible typing methods are lacking. We investigated whether DiversiLab (DL), an automated repetitive-sequence-based PCR bacterial typing system (bioMérieux), is suitable for comparing isolates analyzed at different geographic centers. A total of 39 Escherichia coli and 39 Klebsiella species isolates previously typed by the coordinating center were analyzed. Pulsed-field gel electrophoresis (PFGE) confirmed the presence of one cluster of 6 isolates, three clusters of 3 isolates, and three clusters of 2 isolates for each set of isolates. DL analysis was performed in 11 centers in six different countries using the same protocol. The DL profiles of 425 E. coli and 422 Klebsiella spp. were obtained. The DL system showed a lower discriminatory power for E. coli than did PFGE. The local DL data showed a low concordance, as indicated by the adjusted Rand and Wallace coefficients (0.132 to 0.740 and 0.070 to 1.0 [E. coli] and 0.091 to 0.864 and 0.056 to 1.0 [Klebsiella spp.], respectively). The central analysis showed a significantly improved concordance (0.473 to 1.0 and 0.290 to 1.0 [E. coli] and 0.513 to 0.965 and 0.425 to 1.0 [Klebsiella spp.], respectively). The misclassifications of profiles for individual isolates were mainly due to inconsistent amplification, which was most likely due to variations in the quality and amounts of the isolated DNA used for amplification. Despite local variations, the DL system has the potential to indicate the occurrence of clonal outbreaks in an international setting, provided there is strict adherence to standardized, reproducible DNA isolation methods and analysis protocols, all supported by a central database for profile comparisons

    Distribution of Class 1 Integrons with IS26-Mediated Deletions in Their 3′-Conserved Segments in Escherichia coli of Human and Animal Origin

    Get PDF
    Class 1 integrons play a role in the emergence of multi-resistant bacteria by facilitating the recruitment of gene cassettes encoding antibiotic resistance genes. 512 E. coli strains sourced from humans (n = 202), animals (n = 304) and the environment (n = 6) were screened for the presence of the intI1 gene. In 31/79 integron positive E. coli strains, the gene cassette regions could not be PCR amplified using standard primers. DNA sequence analysis of 6 serologically diverse strains revealed atypical integrons harboured the dfrA5 cassette gene and only 24 bp of the integron 3′-conserved segment (CS) remained, due to the insertion of IS26. PCR targeting intI1 and IS26 followed by restriction fragment length polymorphism (RFLP) analysis identified the integron-dfrA5-IS26 element in 27 E. coli strains of bovine origin and 4 strains of human origin. Southern hybridization and transformation studies revealed the integron-dfrA5-IS26 gene arrangement was either chromosomally located or plasmid borne. Plasmid location in 4/9 E. coli strains and PCR linkage of Tn21 transposition genes with the intI1 gene in 20/31 strains, suggests this element is readily disseminated by horizontal transfer

    Phylogenetic groups, virulence genes and quinolone resistance of integron-bearing Escherichia coli strains isolated from a wastewater treatment plant

    Get PDF
    We investigated phylogenetic affiliation, occurrence of virulence genes and quinolone resistance in 109 integron-containing strains of Escherichia coli isolated from a wastewater treatment plant. Selection for integron-bearing strains caused a shift toward phylogroup D, which was most numerous, followed by A, B1 and B2. Phylogroups D and B2, both of which are reported to include virulent extraintestinal pathotypes, made up 50.5% of all isolates and were present in every stage of wastewater treatment, including final effluent. Diarrheagenic pathotypes made up 21% of the strains. The average virulence factor genes score was low (1.40) and the range was from 0 to 5. Quinolone and fluoroquinolone resistance was observed in 56.0% and 50.4% of the strains, respectively; however, it was not associated with virulence factor score. Although the average virulence factor score was low, 17.4% of strains had three and more virulence genes. They were isolated mostly from raw sewage, but 30% of them were cultured from final effluent. Release of multiresistant integron-bearing E. coli strains with virulence traits into the environment may create potential threat and be of public health concern

    National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands

    Get PDF
    An important cornerstone in the control of antimicrobial resistance (AMR) is a well-designed quantitative system for the surveillance of spread and temporal trends in AMR. Since 2008, the Dutch national AMR surveillance system, based on routine data from medical microbiological laboratories (MMLs), has developed into a successful tool to support the control of AMR in the Netherlands. It provides background information for policy making in public health and healthcare services, supports development of empirical antibiotic therapy guidelines and facilitates in-depth research. In addition, participation of the MMLs in the national AMR surveillance network has contributed to sharing of knowledge and quality improvement. A future improvement will be the implementation of a new semantic standard together with standardised data transfer, which will reduce errors in data handling and enable a more real-time surveillance. Furthermore, the

    Dissemination of Cephalosporin Resistance Genes between Escherichia coli Strains from Farm Animals and Humans by Specific Plasmid Lineages

    Get PDF
    Third-generation cephalosporins are a class of β-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of cephalosporin-resistant E. coli strains from poultry to humans, as has been suggested based on traditional, low-resolution typing methods. Instead, our data suggest that cephalosporin resistance genes are mainly disseminated in animals and humans via distinct plasmids
    corecore