9 research outputs found

    Exoplanet atmospheres Characterization Observatory payload short-wave infrared channel: EChO SWiR

    Get PDF
    EChO (Exoplanet atmospheres Characterization Observatory), a proposal for exoplanets exploration space mission, is considered the next step for planetary atmospheres characterization. It would be a dedicated observatory to uncover a large selected sample of planets spanning a wide range of masses (from gas giants to super-Earths) and orbital temperatures (from hot to habitable). All targets move around stars of spectral types F, G, K, and M. EChO would provide an unprecedented view of the atmospheres of planets in the solar neighbourhood. The consortium formed by various institutions of different countries proposed as ESA M3 an integrated spectrometer payload for EChO covering the wavelength interval 0.4 to 16 µm. This instrument is subdivided into 4 channels: a visible channel, which includes a fine guidance system (FGS) and a VIS spectrometer, a near infrared channel (SWiR), a middle infrared channel (MWiR), and a long wave infrared module (LWiR). In addition, it contains a common set of optics spectrally dividing the wavelength coverage and injecting the combined light of parent stars and their exoplanets into the different channels. The proposed payload meets all of the key performance requirements detailed in the ESA call for proposals as well as all scientific goals. EChO payload is based on different spectrometers covering the spectral range mentioned above. Among them, SWiR spectrometer would work from 2.45 microns to 5.45 microns. In this paper, the optical and mechanical designs of the SWiR channel instrument are reported on

    Experiencia clínica en el manejo de pacientes con leucemia linfática crónica en tratamiento con IBRUTINIB

    Get PDF
    Poster [PC-225] Introducción: Analizar la respuesta y la tolerancia a Ibrutinib en pacientes con Leucemia Linfática Crónica (LLC) en un hospital de tercer nivel. Material y Métodos: Estudio descriptivo, observacional, retrospectivo y unicéntrico en pacientes con LLC en tratamiento con Ibrutinib en un período comprendido entre Marzo 2015 a Abril 2018. Variables recogidas: demográficas (sexo y edad), citogenética, número de líneas previas de tratamiento, tiempo de evolución (desde el diagnóstico hasta inicio de Ibrutinib), linfocitos totales (al inicio y a los 6 meses de Ibrutinib), tiempo en el que se objetiva el recuento linfocitario menor, durabilidad del tratamiento, tipo de respuesta según criterios de la National Comprehensive Cancer Network (NCCN), motivo de suspensión y eventos adversos (EA) reportados. Resultados: 9 pacientes (mujeres 44.4 %) recibieron tratamiento con Ibrutinib. Con una mediana de edad al diagnóstico de 65 años (49 – 76). Al inicio del tratamiento, 2 pacientes presentaron delección 11q, 6 delección 13q, 4 delección 17p (mutación TP53) y 1 trisomía del 12. La mediana de líneas de tratamiento recibidas previo a ibrutinib fue de 1 (0-4), administrándose en primera línea a un paciente con delección 17p (mutación TP53). El tiempo medio de evolución fue de 83 meses. La media de linfocitosis al inicio y a los 6 meses fue 186 y 41 mil/mm3 respectivamente. La mediana de tiempo en alcanzar el recuento linfocitario menor fue de 6 meses (4-24). La media de duración de dicho tratamiento fue de 280 días. Tras > 6 meses de tratamiento la respuesta fue: 5 pacientes respuesta parcial, 3 completa y 1 progresión (transformación a síndrome de Ritcher). Suspendieron el tratamiento 6 pacientes. Los motivos fueron: 3 por eventos adversos (2 cambiaron a Idelalisib), 2 por éxitus (infección y problema cardiovascular) y 1 por progresión clínica. Los EA registrados en las historias clínicas fueron: 3 eventos hemorrágicos, 2 gastrointestinales, 2 cardiovasculares (fibrilación auricular e insuficiencia cardíaca congestiva) y 1 astenia. Conclusiones: En nuestra experiencia clínica Ibrutinib es un fármaco eficaz en el tratamiento de LLC. A pesar de su buena tolerancia, el principal motivo de discontinuación fue la aparición de efectos adversos moderados/ graves de tipo hemorrágicos y cardiovasculares. Lo que nos indica la necesidad de realizar una minuciosa selección del paciente más idóneo y una estrecha monitorización durante el tratamiento con Ibrutinib

    Radiation and Dust Sensor for Mars Environmental Dynamic Analyzer Onboard M2020 Rover

    Get PDF
    32 pags., 26 figs., 3 tabs. -- This article belongs to the Section Remote SensorsThe Radiation and Dust Sensor is one of six sensors of the Mars Environmental Dynamics Analyzer onboard the Perseverance rover from the Mars 2020 NASA mission. Its primary goal is to characterize the airbone dust in the Mars atmosphere, inferring its concentration, shape and optical properties. Thanks to its geometry, the sensor will be capable of studying dust-lifting processes with a high temporal resolution and high spatial coverage. Thanks to its multiwavelength design, it will characterize the solar spectrum from Mars' surface. The present work describes the sensor design from the scientific and technical requirements, the qualification processes to demonstrate its endurance on Mars' surface, the calibration activities to demonstrate its performance, and its validation campaign in a representative Mars analog. As a result of this process, we obtained a very compact sensor, fully digital, with a mass below 1 kg and exceptional power consumption and data budget features.This work has been funded with the help of the Spanish National Research, Development and Innovation Program, through the grants RTI2018-099825-B-C31, ESP2016-80320-C2-1-R and ESP2014-54256-C4-3-R. DT acknowledges the financial support from the Comunidad de Madrid for an “Atracción de Talento Investigador” grant (2018-T2/TIC10500). ASL is supported by Grant PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/ and by Grupos Gobierno Vasco IT1366-19. The US co-authors performed their work under sponsorship from NASA’s Mars 2020 project, from the Game Changing Development program within the Space Technology Mission Directorate, and from the Human Exploration and Operations Directorate.Peer reviewe

    OMC: An Optical Monitoring Camera for INTEGRAL - Instrument description and performance

    Get PDF
    The Optical Monitoring Camera (OMC) will observe the optical emission from the prime targets of the gammaray instruments onboard the ESA mission INTEGRAL, with the support of the JEM-X monitor in the X-ray domain. This capability will provide invaluable diagnostic information on the nature and the physics of the sources over a broad wavelength range. Its main scientific objectives are: ( 1) to monitor the optical emission from the sources observed by the gamma- and X-ray instruments, measuring the time and intensity structure of the optical emission for comparison with variability at high energies, and ( 2) to provide the brightness and position of the optical counterpart of any gamma- or X-ray transient taking place within its field of view. The OMC is based on a refractive optics with an aperture of 50 mm focused onto a large format CCD (1024 x 2048 pixels) working in frame transfer mode (1024 x 1024 pixels imaging area). With a field of view of 5degrees x 5degrees it will be able to monitor sources down to magnitude V = 18. Typical observations will perform a sequence of different integration times, allowing for photometric uncertainties below 0.1 mag for objects with V less than or equal to 16
    corecore