155 research outputs found
Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction.
The neurochemical changes underlying human emotions and social behaviour are largely unknown. Here we report on the changes in the levels of two hypothalamic neuropeptides, hypocretin-1 and melanin-concentrating hormone, measured in the human amygdala. We show that hypocretin-1 levels are maximal during positive emotion, social interaction and anger, behaviours that induce cataplexy in human narcoleptics. In contrast, melanin-concentrating hormone levels are minimal during social interaction, but are increased after eating. Both peptides are at minimal levels during periods of postoperative pain despite high levels of arousal. Melanin-concentrating hormone levels increase at sleep onset, consistent with a role in sleep induction, whereas hypocretin-1 levels increase at wake onset, consistent with a role in wake induction. Levels of these two peptides in humans are not simply linked to arousal, but rather to specific emotions and state transitions. Other arousal systems may be similarly emotionally specialized
A Simple Statistical Method for the Automatic Detection of Ripples in Human Intracranial EEG
High frequency oscillations (HFOs) are a promising biomarker of epileptic tissue, but detection of these electrographic events remains a challenge. Automatic detectors show encouraging results, but they typically require optimization of multiple parameters, which is a barrier to good performance and broad applicability. We therefore propose a new automatic HFO detection algorithm, focusing on simplicity and ease of implementation. It requires tuning of only an amplitude threshold, which can be determined by an iterative process or directly calculated from statistics of the rectified filtered data (i.e. mean plus standard deviation). The iterative approach uses an estimate of the amplitude probability distribution of the background activity to calculate the optimum threshold for identification of transient high amplitude events. We tested both the iterative and non-iterative approaches using a dataset of visually marked HFOs, and we compared the performance to a commonly used detector based on the root-mean-square. When the threshold was optimized for individual channels via ROC curve, all three methods were comparable. The iterative detector achieved a sensitivity of 99.6%, false positive rate (FPR) of 1.1%, and false detection rate (FDR) of 37.3%. However, in an eight-fold cross-validation test, the iterative method had better sensitivity than the other two methods (80.0% compared to 64.4 and 65.8%), with FPR and FDR of 1.3, and 49.4%, respectively. The simplicity of this algorithm, with only a single parameter, will enable consistent application of automatic detection across research centers and recording modalities, and it may therefore be a powerful tool for the assessment and localization of epileptic activity
Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I
Umbilical cord blood (UCB) is a promising source of stem cells to use in early haematopoietic stem
cell transplantation (HSCT) approaches for several genetic diseases that can be diagnosed at birth. Mucopolysaccharidosis type I (MPS-I) is a progressive multi-system disorder caused by deficiency
of lysosomal enzyme α-L-iduronidase, and patients treated with allogeneic HSCT at the onset
have improved outcome, suggesting to administer such therapy as early as possible. Given that
the best characterized MPS-I murine model is an immunocompetent mouse, we here developed a transplantation system based on murine UCB. With the final aim of testing the therapeutic efficacy of UCB in MPS-I mice transplanted at birth, we first defined the features of murine UCB cells and demonstrated that they are capable of multi-lineage haematopoietic repopulation of myeloablated adult mice similarly to bone marrow cells. We then assessed the effectiveness of murine UCB cells transplantation in busulfan-conditioned newborn MPS-I mice. Twenty weeks after treatment, iduronidase activity was increased in visceral organs of MPS-I animals, glycosaminoglycans storage was reduced, and skeletal phenotype was ameliorated. This study explores a potential therapy for MPS-I at a very early stage in life and represents a novel model to test UCB-based transplantation approaches for various diseases
Clinical manifestations and treatment of mucopolysaccharidosis type I patients in Latin America as compared with the rest of the world
Background Mucopolysaccharidosis I (MPS I) comprises a spectrum of clinical manifestations and is divided into three phenotypes reflecting clinical severity: Hurler, Hurler-Scheie, and Scheie syndromes. There may be important variations in clinical manifestations of this genetic disease in patients residing in different regions of the world.Methods Using data from the MPS I Registry (as of September 2009), we evaluated patients from Latin America (n=118) compared with patients from the rest of the world [ROW (n=727)].Results Phenotype distribution differed among patients in Latin America compared to ROW(Hurler 31 vs. 62%, Hurler-Scheie 36 vs. 21%, Scheie 10 vs. 11%, and unknown 22 vs. 6%). the frequency of certain symptoms, such as cardiac valve abnormalities, sleep impairment, and joint contractures, also differed between Latin America and ROW for some phenotypes. Median age at MPS I diagnosis was earlier in the ROW than Latin America for all phenotypes, and age at first treatment for Hurler and Hurler-Scheie patients was also earlier in the ROW. Hurler patients in Latin America showed a gap of 3.1 years between median ages of diagnosis and first treatment compared to only 0.5 years in the ROW. Treatment allocation in Latin America compared to ROW was as follows: enzyme replacement therapy (ERT) only, 80 vs. 45%; hematopoietic stem cell transplantation (HSCT) only, 0.9 vs. 27%; both ERT and HSCT, 0 vs. 16%; and neither treatment, 19 vs. 13%.Conclusion These data highlight important differences in MPS I patients between Latin America and ROW in terms of phenotypic distribution, clinical manifestations, and treatment practices.MPS I Registry team at Genzyme CorporationHosp Nacl Pediat JP Garrahan, Unidad Errores Congenitos Metab, Buenos Aires, DF, ArgentinaHosp Especialidades UMAE 25, Monterrey, MexicoGenzyme Corp, Latin Amer Grp, Registry Program, Rio de Janeiro, BrazilUniv Rosario, Fdn Univ Ciencias Salud, Bogota, ColombiaUniv Valparaiso, Fac Med, Neurol Infantil Programa Formac Neuropediat, Valparaiso, ChileUniv Chile, INTA, Lab Genet & Enfermedades Metab, Santiago, ChileUniversidade Federal de São Paulo, Ctr Referencia Erros Inatos Metab, São Paulo, BrazilGenzyme Corp, Latin Amer Grp, Compassionate Use Program, Rio de Janeiro, BrazilUniversidade Federal de São Paulo, Ctr Referencia Erros Inatos Metab, São Paulo, BrazilWeb of Scienc
Sleep in the Human Hippocampus: A Stereo-EEG Study
Background. There is compelling evidence indicating that sleep plays a crucial role in the consolidation of new declarative, hippocampus-dependent memories. Given the increasing interest in the spatiotemporal relationships between cortical and hippocampal activity during sleep, this study aimed to shed more light on the basic features of human sleep in the hippocampus. Methodology/Principal Findings. We recorded intracerebral stereo-EEG directly from the hippocampus and neocortical sites in five epileptic patients undergoing presurgical evaluations. The time course of classical EEG frequency bands during the first three NREM-REM sleep cycles of the night was evaluated. We found that delta power shows, also in the hippocampus, the progressive decrease across sleep cycles, indicating that a form of homeostatic regulation of delta activity is present also in this subcortical structure. Hippocampal sleep was also characterized by: i) a lower relative power in the slow oscillation range during NREM sleep compared to the scalp EEG; ii) a flattening of the time course of the very low frequencies (up to 1 Hz) across sleep cycles, with relatively high levels of power even during REM sleep; iii) a decrease of power in the beta band during REM sleep, at odds with the typical increase of power in the cortical recordings. Conclusions/Significance. Our data imply that cortical slow oscillation is attenuated in the hippocampal structures during NREM sleep. The most peculiar feature of hippocampal sleep is the increased synchronization of the EEG rhythms during REM periods. This state of resonanc
Impact of cognitive stimulation on ripples within human epileptic and non-epileptic hippocampus
Background: Until now there has been no way of distinguishing between physiological and epileptic hippocampal ripples in intracranial recordings. In the present study we addressed this by investigating the effect of cognitive stimulation on interictal high frequency oscillations in the ripple range (80-250 Hz) within epileptic (EH) and non-epileptic hippocampus (NH). Methods: We analyzed depth EEG recordings in 10 patients with intractable epilepsy, in whom hippocampal activity was recorded initially during quiet wakefulness and subsequently during a simple cognitive task. Using automated detection of ripples based on amplitude of the power envelope, we analyzed ripple rate (RR) in the cognitive and resting period, within EH and NH. Results: Compared to quiet wakefulness we observed a significant reduction of RR during cognitive stimulation in EH, while it remained statistically marginal in NH. Further, we investigated the direct impact of cognitive stimuli on ripples (i.e. immediately post-stimulus), which showed a transient statistically significant suppression of ripples in the first second after stimuli onset in NH only. Conclusion: Our results point to a differential reactivity of ripples within EH and NH to cognitive stimulation
Human Gamma Oscillations during Slow Wave Sleep
Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS). At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30–50 Hz) and high (60–120 Hz) frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves (“IN-phase” pattern), confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave (“ANTI-phase” pattern). This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks
The role of enzyme replacement therapy in severe Hunter syndrome—an expert panel consensus
Intravenous enzyme replacement therapy (ERT) with idursulfase for Hunter syndrome has not been demonstrated to and is not predicted to cross the blood–brain barrier. Nearly all published experience with ERT with idursulfase has therefore been in patients without cognitive impairment (attenuated phenotype). Little formal guidance is available on the issues surrounding ERT in cognitively impaired patients with the severe phenotype. An expert panel was therefore convened to provide guidance on these issues. The clinical experience of the panel with 66 patients suggests that somatic improvements (e.g., reduction in liver volume, increased mobility, and reduction in frequency of respiratory infections) may occur in most severe patients. Cognitive benefits have not been seen. It was agreed that, in general, severe patients are candidates for at least a 6–12-month trial of ERT, excluding patients who are severely neurologically impaired, those in a vegetative state, or those who have a condition that may lead to near-term death. It is imperative that the treating physician discuss the goals of treatment, methods of assessment of response, and criteria for discontinuation of treatment with the family before ERT is initiated. Conclusion: The decision to initiate ERT in severe Hunter syndrome should be made by the physician and parents and must be based on realistic expectations of benefits and risks, with the understanding that ERT may be withdrawn in the absence of demonstrable benefits
Patterns of subregional cerebellar atrophy across epilepsy syndromes: An ENIGMA-Epilepsy study
\ua9 2024 The Authors. Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.Objective: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. Methods: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. Results: Across all epilepsies, reduced total cerebellar volume was observed (d =.42). Maximum volume loss was observed in the corpus medullare (dmax =.49) and posterior lobe gray matter regions, including bilateral lobules VIIB (dmax =.47), crus I/II (dmax =.39), VIIIA (dmax =.45), and VIIIB (dmax =.40). Earlier age at seizure onset ((Formula presented.) =.05) and longer epilepsy duration ((Formula presented.) =.06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. Significance: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy
Single-neuron dynamics in human focal epilepsy
Epileptic seizures are traditionally characterized as the ultimate expression of monolithic, hypersynchronous neuronal activity arising from unbalanced runaway excitation. Here we report the first examination of spike train patterns in large ensembles of single neurons during seizures in persons with epilepsy. Contrary to the traditional view, neuronal spiking activity during seizure initiation and spread was highly heterogeneous, not hypersynchronous, suggesting complex interactions among different neuronal groups even at the spatial scale of small cortical patches. In contrast to earlier stages, seizure termination is a nearly homogenous phenomenon followed by an almost complete cessation of spiking across recorded neuronal ensembles. Notably, even neurons outside the region of seizure onset showed significant changes in activity minutes before the seizure. These findings suggest a revision of current thinking about seizure mechanisms and point to the possibility of seizure prevention based on spiking activity in neocortical neurons
- …