360 research outputs found
Additive QTLs on three chromosomes control flowering time in woodland strawberry (Fragaria vesca L.)
Flowering time is an important trait that affects survival, reproduction and yield in both wild and cultivated plants. Therefore, many studies have focused on the identification of flowering time quantitative trait locus (QTLs) in different crops, and molecular control of this trait has been extensively investigated in model species. Here we report the mapping of QTLs for flowering time and vegetative traits in a large woodland strawberry mapping population that was phenotyped both under field conditions and in a greenhouse after flower induction in the field. The greenhouse experiment revealed additive QTLs in three linkage groups (LG), two on both LG4 and LG7, and one on LG6 that explain about half of the flowering time variance in the population. Three of the QTLs were newly identified in this study, and one co-localized with the previously characterized FvTFL1 gene. An additional strong QTL corresponding to previously mapped PFRU was detected in both field and greenhouse experiments indicating that gene(s) in this locus can control the timing of flowering in different environments in addition to the duration of flowering and axillary bud differentiation to runners and branch crowns. Several putative flowering time genes were identified in these QTL regions that await functional validation. Our results indicate that a few major QTLs may control flowering time and axillary bud differentiation in strawberries. We suggest that the identification of causal genes in the diploid strawberry may enable fine tuning of flowering time and vegetative growth in the closely related octoploid cultivated strawberry.Peer reviewe
Antarctic tipping points triggered by the mid-Pliocene warm climate
Tipping elements, including the Antarctic Ice Sheet (AIS), are Earth system components that could reach critical thresholds due to anthropogenic emissions. Increasing our understanding of past warm climates can help to elucidate the future contribution of the AIS to emissions. The mid-Pliocene Warm Period (mPWP; ∼ 3.3–3.0 million years ago) serves as an ideal benchmark experiment. During this period, CO2 levels were similar to the present day (PD; 350–450 ppmv), but global mean temperatures were 2.5–4.0 K higher. Sea level reconstructions from that time indicate a rise of 5–25 m compared to the present, highlighting the potential crossing of tipping points in Antarctica. In order to achieve a sea level contribution far beyond 10 m, not only the West Antarctic Ice Sheet (WAIS) needs to largely decrease, but a significant response in the East Antarctic Ice Sheet (EAIS) is also required. A key question in reconstructions and simulations is therefore which of the AIS basins retreated during the mPWP. In this study, we investigate how the AIS responds to climatic and bedrock conditions during the mPWP. To this end, we use the Pliocene Model Intercomparison Project, Phase 2 (PlioMIP2), general circulation model ensemble to force a higher-order ice sheet model. Our simulations reveal that the WAIS experiences collapse with a 0.5 K oceanic warming. The Wilkes Basin shows retreat at 3 K oceanic warming, although higher precipitation rates could mitigate such a retreat. Totten Glacier shows slight signs of retreats only under high-oceanic warming conditions (greater than 4 K oceanic anomaly). If only the WAIS collapses, we simulate a mean contribution of 2.7 to 7.0 ms.l.e. (metres of sea level equivalent). If, in addition, the Wilkes Basin retreats, our simulations suggest a mean contribution of 6.0 to 8.9 ms.l.e. Besides uncertainties related to the climate forcing, we also examine other sources of uncertainty related to initial ice thickness and ice dynamics. We find that the climatologies yield a higher uncertainty than the dynamical configuration if parameters are constrained with PD observations and that starting from Pliocene reconstructions leads to smaller ice sheet configurations due to the hysteresis behaviour of marine bedrocks. Ultimately, our study concludes that marine ice cliff instability is not a prerequisite for the retreat of the Wilkes Basin. Instead, a significant rise in oceanic temperatures can initiate such a retreat.</p
The diverse chemistry of protoplanetary disks as revealed by JWST
Early results from the JWST-MIRI guaranteed time programs on protostars
(JOYS) and disks (MINDS) are presented. Thanks to the increased sensitivity,
spectral and spatial resolution of the MIRI spectrometer, the chemical
inventory of the planet-forming zones in disks can be investigated with
unprecedented detail across stellar mass range and age. Here data are presented
for five disks, four around low-mass stars and one around a very young
high-mass star. The mid-infrared spectra show some similarities but also
significant diversity: some sources are rich in CO2, others in H2O or C2H2. In
one disk around a very low-mass star, booming C2H2 emission provides evidence
for a ``soot'' line at which carbon grains are eroded and sublimated, leading
to a rich hydrocarbon chemistry in which even di-acetylene (C4H2) and benzene
(C6H6) are detected (Tabone et al. 2023). Together, the data point to an active
inner disk gas-phase chemistry that is closely linked to the physical structure
(temperature, snowlines, presence of cavities and dust traps) of the entire
disk and which may result in varying CO2/H2O abundances and high C/O ratios >1
in some cases. Ultimately, this diversity in disk chemistry will also be
reflected in the diversity of the chemical composition of exoplanets.Comment: 17 pages, 8 figures. Author's version of paper submitted to Faraday
Discussions January 18 2023, Accepted March 16 202
Barriers-enablers-ownership approach: A mixed methods analysis of a social intervention to improve surgical antibiotic prescribing in hospitals
Objectives To assess an intervention for surgical antibiotic prophylaxis (SAP) improvement within surgical teams focused on addressing barriers and fostering enablers and ownership of guideline compliance. Design The Queensland Surgical Antibiotic Prophylaxis (QSAP) study was a multicentre, mixed methods study designed to address barriers and enablers to SAP compliance and facilitate engagement in self-directed audit/feedback and assess the efficacy of the intervention in improving compliance with SAP guidelines. The implementation was assessed using a 24-month interrupted time series design coupled with a qualitative evaluation. Setting The study was undertaken at three hospitals (one regional, two metropolitan) in Australia. Participants SAP-prescribing decisions for 1757 patients undergoing general surgical procedures from three health services were included. Six bimonthly time points, pre-implementation and post implementation of the intervention, were measured. Qualitative interviews were performed with 29 clinical team members. SAP improvements varied across site and time periods. Intervention QSAP embedded ownership of quality improvement in SAP within surgical teams and used known social influences to address barriers to and enablers of optimal SAP prescribing. Results The site that reported senior surgeon engagement showed steady and consistent improvement in prescribing over 24 months (prestudy and poststudy). Multiple factors, including resource issues, influenced engagement and sites/time points where these were present had no improvement in guideline compliance. Conclusions The barriers-enablers-ownership model shows promise in its ability to facilitate prescribing improvements and could be expanded into other areas of antimicrobial stewardship. Senior ownership was a predictor of success (or failure) of the intervention across sites and time periods. The key role of senior leaders in change leadership indicates the critical need to engage other specialties in the stewardship agenda. The influence of contextual factors in limiting engagement clearly identifies issues of resource distributions/inequalities within health systems as limiting antimicrobial optimisation potential
Complex organic molecules in low-mass protostars on Solar System scales -- II. Nitrogen-bearing species
The chemical inventory of planets is determined by the physical and chemical
processes that govern the early phases of star formation. The aim is to
investigate N-bearing complex organic molecules towards two Class 0 protostars
(B1-c and S68N) at millimetre wavelengths with ALMA. Next, the results of the
detected N-bearing species are compared with those of O-bearing species for the
same and other sources. ALMA observations in Band 6 ( 1 mm) and Band 5
( 2 mm) are studied at 0.5" resolution, complemented by Band 3
( 3 mm) data in a 2.5" beam. NH2CHO, C2H5CN, HNCO, HN13CO, DNCO,
CH3CN, CH2DCN, and CHD2CN are identified towards the investigated sources.
Their abundances relative to CH3OH and HNCO are similar for the two sources,
with column densities that are typically an order of magnitude lower than those
of O-bearing species. The largest variations, of an order of magnitude, are
seen for NH2CHO abundance ratios with respect to HNCO and CH3OH and do not
correlate with the protostellar luminosity. In addition, within uncertainties,
the N-bearing species have similar excitation temperatures to those of
O-bearing species ( 100 300 K). The similarity of most abundances
with respect to HNCO, including those of CH2DCN and CHD2CN, hints at a shared
chemical history, especially the high D/H ratio in cold regions prior to star
formation. However, some of the variations in abundances may reflect the
sensitivity of the chemistry to local conditions such as temperature (e.g.
NH2CHO), while others may arise from differences in the emitting areas of the
molecules linked to their different binding energies in the ice. The two
sources discussed here add to the small number of sources with such a detailed
chemical analysis on Solar System scales. Future JWST data will allow a direct
comparison between the ice and gas abundances of N-bearing species.Comment: Accepted to A&A, 41 pages, 37 figure
JOYS+: mid-infrared detection of gas-phase SO emission in a low-mass protostar. The case of NGC 1333 IRAS2A: hot core or accretion shock?
JWST/MIRI has sharpened our infrared eyes toward the star formation process.
This paper presents the first mid-infrared detection of gaseous SO emission
in an embedded low-mass protostellar system. MIRI-MRS observations of the
low-mass protostellar binary NGC 1333 IRAS2A are presented from the JWST
Observations of Young protoStars (JOYS+) program, revealing emission from the
SO asymmetric stretching mode at 7.35 micron. The results are
compared to those derived from high-angular resolution SO data obtained
with ALMA. The SO emission from the band is predominantly located
on au scales around the main component of the binary, IRAS2A1. A
rotational temperature of K is derived from the lines. This is
in good agreement with the rotational temperature derived from pure rotational
lines in the vibrational ground state (i.e., ) with ALMA ( K).
However, the emission of the lines is not in LTE given that the total
number of molecules predicted by a LTE model is found to be a factor
higher than what is derived for the state. This
difference can be explained by a vibrational temperature that is K
higher than the derived rotational temperature of the state. The
brightness temperature derived from the continuum around the band of
SO is K, which confirms that the level is not
collisionally populated but rather infrared pumped by scattered radiation. This
is also consistent with the non-detection of the bending mode at 18-20
micron. Given the rotational temperature, the extent of the emission (
au in radius), and the narrow line widths in the ALMA data (3.5 km/s), the
SO in IRAS2A likely originates from ice sublimation in the central hot core
around the protostar rather than from an accretion shock at the disk-envelope
boundary.Comment: 19 pages, 17 figures, accepted for publication in A&A, abstract
abbreviate
Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis
Although mouse infection models have been extensively used to study the host response to Mycobacterium tuberculosis, their validity in revealing determinants of human tuberculosis (TB) resistance and disease progression has been heavily debated. Here, we show that the modular transcriptional signature in the blood of susceptible mice infected with a clinical isolate of M. tuberculosis resembles that of active human TB disease, with dominance of a type I interferon response and neutrophil activation and recruitment, together with a loss in B lymphocyte, natural killer and T cell effector responses. In addition, resistant but not susceptible strains of mice show increased lung B cell, natural killer and T cell effector responses in the lung upon infection. Notably, the blood signature of active disease shared by mice and humans is also evident in latent TB progressors before diagnosis, suggesting that these responses both predict and contribute to the pathogenesis of progressive M. tuberculosis infection
Co expression of SCF and KIT in gastrointestinal stromal tumours (GISTs) suggests an autocrine/paracrine mechanism
KIT is a tyrosine kinase receptor expressed by several tumours, which has for specific ligand the stem cell factor (SCF). KIT is the main oncogene in gastrointestinal stromal tumours (GISTs), and gain-of-function KIT mutations are present in 70% of these tumours. The aim of the study was to measure and investigate the mechanisms of KIT activation in 80 KIT-positive GIST patients. KIT activation was quantified by detecting phosphotyrosine residues in Western blotting. SCF production was determined by reverse transcriptase–PCR, ELISA and/or immunohistochemistry. Primary cultures established from three GISTs were also analysed. The results show that KIT activation was detected in all cases, even in absence of KIT mutations. The fraction of activated KIT was not correlated with the mutational status of GISTs. Membrane and soluble isoforms of SCF mRNA were present in all GISTs analysed. Additionally, SCF was also detected in up to 93% of GISTs, and seen to be present within GIST cells. Likewise, the two SCF mRNA isoforms were found to be expressed in GIST-derived primary cultures. Thus, KIT activation in GISTs may in part result from the presence of SCF within the tumours
Identification of biological factors predictive of response to imatinib mesylate in aggressive fibromatosis
Water in the terrestrial planet-forming zone of the PDS 70 disk
Terrestrial and sub-Neptune planets are expected to form in the inner
(AU) regions of protoplanetary disks. Water plays a key role in their
formation, although it is yet unclear whether water molecules are formed
in-situ or transported from the outer disk. So far Spitzer Space Telescope
observations have only provided water luminosity upper limits for dust-depleted
inner disks, similar to PDS 70, the first system with direct confirmation of
protoplanet presence. Here we report JWST observations of PDS 70, a benchmark
target to search for water in a disk hosting a large (AU)
planet-carved gap separating an inner and outer disk. Our findings show water
in the inner disk of PDS 70. This implies that potential terrestrial planets
forming therein have access to a water reservoir. The column densities of water
vapour suggest in-situ formation via a reaction sequence involving O, H,
and/or OH, and survival through water self-shielding. This is also supported by
the presence of CO emission, another molecule sensitive to UV
photodissociation. Dust shielding, and replenishment of both gas and small dust
from the outer disk, may also play a role in sustaining the water reservoir.
Our observations also reveal a strong variability of the mid-infrared spectral
energy distribution, pointing to a change of inner disk geometry.Comment: To appear in Nature on 24 July 2023. 21 pages, 10 figures; includes
extended data. Part of the JWST MINDS Guaranteed Time Observations program's
science enabling products. Spectra downloadable on Zenodo at
https://zenodo.org/record/799102
- …
