1,272 research outputs found
Multiple-scattering effects on incoherent neutron scattering in glasses and viscous liquids
Incoherent neutron scattering experiments are simulated for simple dynamic
models: a glass (with a smooth distribution of harmonic vibrations) and a
viscous liquid (described by schematic mode-coupling equations). In most
situations multiple scattering has little influence upon spectral
distributions, but it completely distorts the wavenumber-dependent amplitudes.
This explains an anomaly observed in recent experiments
YAC contigs of the Rab1 and wobbler (wr) spinal muscular atrophy gene region on proximal mouse chromosome 11 and of the homologous region on human chromosome 2p
powerful tool to advance the identi®cation of gene com-Despite rapid progress in the physical characteriza- plexes and of disease genes. In this respect, the analysis tion of murine and human genomes, little molecular in- of human chromosomes 16 and 19 (Nowak, 1995) and formation is available on certain regions, e.g., proximal mouse chromosomes 1 (Hunter et al., 1994) and 17 (Cox mouse chromosome 11 (Chr 11) and human chromosome et al., 1993) as well as of human and murine X chromo-2p (Chr 2p). We have localized the wobbler spinal atrophy somes is particularly far advanced (Hamvas et al., 1993). gene wr to proximal mouse Chr 11, tightly linked toRab1, On the other hand, such extensive information is not a gene coding for a small GTP-binding protein, and Glns- available for mouse proximal chromosome 11 (Chr 11) ps1, an intronless pseudogene of the glutamine synthe- and human chromosome 2p (Chr 2p) (Fig. 1; cf. Berry et tase gene. We have now used these markers to construct al., 1995; Nowak, 1995), known to share at least the genesa 1.3-Mb yeast arti®cial chromosome (YAC) contig of the for the reticuloendotheliosis oncogene (Brownell et al.,Rab1 region on mouse Chr 11. Four YAC clones isolated 1985), for a brain-speci®cb-spectrin isoform (Bloom et al.,from two independent YAC libraries were characterized 1992), and for cytoplasmic malate dehydrogenase (Ball etby rare-cutting analysis, ¯uorescence in situ hybridiza-al., 1994). However, comparing the segregation map oftion (FISH), and sequence-tagged site (STS) isolation and the mouse with the human cytogenetic map, a colinearmapping. Rab1 and Glns-ps1 were found to be only 20
The Dynamic Transition of Protein Hydration Water
Thin layers of water on biomolecular and other nanostructured surfaces can be
supercooled to temperatures not accessible with bulk water. Chen et al. [PNAS
103, 9012 (2006)] suggested that anomalies near 220 K observed by quasi-elastic
neutron scattering can be explained by a hidden critical point of bulk water.
Based on more sensitive measurements of water on perdeuterated phycocyanin,
using the new neutron backscattering spectrometer SPHERES, and an improved data
analysis, we present results that show no sign of such a fragile-to-strong
transition. The inflection of the elastic intensity at 220 K has a dynamic
origin that is compatible with a calorimetric glass transition at 170 K. The
temperature dependence of the relaxation times is highly sensitive to data
evaluation; it can be brought into perfect agreement with the results of other
techniques, without any anomaly.Comment: 4 pages, 3 figures. Phys. Rev. Lett. (in press
Thermalization via Heat Radiation of an Individual Object Thinner than the Thermal Wavelength
Modeling and investigating the thermalization of microscopic objects with
arbitrary shape from first principles is of fundamental interest and may lead
to technical applications. Here, we study, over a large temperature range, the
thermalization dynamics due to far-field heat radiation of an individual,
deterministically produced silica fiber with a predetermined shape and a
diameter smaller than the thermal wavelength. The temperature change of the
subwavelength-diameter fiber is determined through a measurement of its optical
path length in conjunction with an ab initio thermodynamic model of the fiber
structure. Our results show excellent agreement with a theoretical model that
considers heat radiation as a volumetric effect and takes the emitter shape and
size relative to the emission wavelength into account
Propylene Carbonate Reexamined: Mode-Coupling Scaling without Factorisation ?
The dynamic susceptibility of propylene carbonate in the moderately viscous
regime above is reinvestigated by incoherent neutron and
depolarised light scattering, and compared to dielectric loss and solvation
response. Depending on the strength of relaxation, a more or less
extended scaling regime is found. Mode-coupling fits yield consistently
and K, although different positions of the
susceptibility minimum indicate that not all observables have reached the
universal asymptotics
Atomic Transport in Dense, Multi-Component Metallic Liquids
Pd43Ni10Cu27P0 has been investigated in its equilibrium liquid state with
incoherent, inelastic neutron scattering. As compared to simple liquids, liquid
PdNiCuP is characterized by a dense packing with a packing fraction above 0.5.
The intermediate scattering function exhibits a fast relaxation process that
precedes structural relaxation. Structural relaxation obeys a time-temperature
superposition that extends over a temperature range of 540K. The mode-coupling
theory of the liquid to glass transition (MCT) gives a consistent description
of the dynamics which governs the mass transport in liquid PdNiCuP alloys. MCT
scaling laws extrapolate to a critical temperature Tc at about 20% below the
liquidus temperature. Diffusivities derived from the mean relaxation times
compare well with Co diffusivities from recent tracer diffusion measurements
and diffsuivities calculated from viscosity via the Stokes-Einstein relation.
In contrast to simple metallic liquids, the atomic transport in dense, liquid
PdNiCuP is characterized by a drastical slowing down of dynamics on cooling, a
q^{-2} dependence of the mean relaxation times at intermediate q and a
vanishing isotope effect as a result of a highly collective transport
mechanism. At temperatures as high as 2Tc diffusion in liquid PdNiCuP is as
fast as in simple liquids at the melting point. However, the difference in the
underlying atomic transport mechanism indicates that the diffusion mechanism in
liquids is not controlled by the value of the diffusivity but rather by that of
the packing fraction
Depinning in a Random Medium
We develop a renormalized continuum field theory for a directed polymer
interacting with a random medium and a single extended defect. The
renormalization group is based on the operator algebra of the pinning
potential; it has novel features due to the breakdown of hyperscaling in a
random system. There is a second-order transition between a localized and a
delocalized phase of the polymer; we obtain analytic results on its critical
pinning strength and scaling exponents. Our results are directly related to
spatially inhomogeneous Kardar-Parisi-Zhang surface growth.Comment: 11 pages (latex) with one figure (now printable, no other changes
Nanofiber Fabry-Perot microresonator for non-linear optics and cavity quantum electrodynamics
We experimentally realize a Fabry-Perot-type optical microresonator near the
cesium D2 line wavelength based on a tapered optical fiber, equipped with two
fiber Bragg gratings which enclose a sub-wavelength diameter waist. Owing to
the very low taper losses, the finesse of the resonator reaches F = 86 while
the on-resonance transmission is T = 11 %. The characteristics of our resonator
fulfill the requirements of non-linear optics and cavity quantum
electrodynamics in the strong coupling regime. In combination with its
demonstrated ease of use and its advantageous mode geometry, it thus opens a
realm of applications.Comment: 4 pages, 3 figure
SPHERES, J\"ulich's High-Flux Neutron Backscattering Spectrometer at FRM II
SPHERES (SPectrometer with High Energy RESolution) is a third-generation
neutron backscattering spectrometer, located at the 20 MW German neutron source
FRM II and operated by the Juelich Centre for Neutron Science. It offers an
energy resolution (fwhm) better than 0.65 micro-eV, a dynamic range of +-31
micro-eV, and a signal-to-noise ratio of up to 1750:1.Comment: 12 pages, 7 figures, 2 tables. Supplemental material consists of 3
pages, 2 figures, 2 table
Molecular mode-coupling theory applied to a liquid of diatomic molecules
We study the molecular mode coupling theory for a liquid of diatomic
molecules. The equations for the critical tensorial nonergodicity parameters
and the critical amplitudes of the - relaxation
are solved up to a cut off = 2 without any
further approximations.
Here are indices of spherical harmonics. Contrary to previous studies,
where additional approximations were applied, we find in agreement with
simulations, that all molecular degrees of freedom vitrify at a single
temperature . The theoretical results for the non ergodicity parameters
and the critical amplitudes are compared with those from simulations. The
qualitative agreement is good for all molecular degrees of freedom. To study
the influence of the cut off on the non ergodicity parameter, we also calculate
the non ergodicity parameters for an upper cut off . In addition we
also propose a new method for the calculation of the critical nonergodicity
parameterComment: 27 pages, 17 figure
- …
