137 research outputs found

    Ground state properties of ferromagnetic metal/conjugated polymer interfaces

    Full text link
    We theoretically investigate the ground state properties of ferromagnetic metal/conjugated polymer interfaces. The work is partially motivated by recent experiments in which injection of spin polarized electrons from ferromagnetic contacts into thin films of conjugated polymers was reported. We use a one-dimensional nondegenerate Su-Schrieffer-Heeger (SSH) Hamiltonian to describe the conjugated polymer and one-dimensional tight-binding models to describe the ferromagnetic metal. We consider both a model for a conventional ferromagnetic metal, in which there are no explicit structural degrees of freedom, and a model for a half-metallic ferromagnetic colossal magnetoresistance (CMR) oxide which has explicit structural degrees of freedom. The Fermi energy of the magnetic metallic contact is adjusted to control the degree of electron transfer into the polymer. We investigate electron charge and spin transfer from the ferromagnetic metal to the organic polymer, and structural relaxation near the interface. Bipolarons are the lowest energy charge state in the bulk polymer for the nondegenerate SSH model Hamiltonian. As a result electrons (or holes) transferred into the bulk of the polymer form spinless bipolarons. However, there can be spin density in the polymer localized near the interface.Comment: 7 figure

    Transient parkinsonism in isolated extrapontine myelinolysis

    Get PDF
    Extrapontine myelinolysis (EPM) is a rare cause of parkinsonism. In this case report, we describe a 63-year-old woman with parkinsonism due to EPM after correction of hyponatremia. During a 4-year follow-up, both the clinical features of parkinsonism and the changes on magnetic resonance imaging resolved. Parkinsonism due to EPM should be recognized as it has a good prognosis

    Coulomb-blockade transport in single-crystal organic thin-film transistors

    Get PDF
    Coulomb-blockade transport—whereby the Coulomb interaction between electrons can prohibit their transport around a circuit—occurs in systems in which both the tunnel resistance, RT, between neighbouring sites is large (»h/e2) and the charging energy, EC (EC = e2/2C, where C is the capacitance of the site), of an excess electron on a site is large compared to kT. (Here e is the charge of an electron, k is Boltzmann's constant, and h is Planck's constant.) The nature of the individual sites—metallic, superconducting, semiconducting or quantum dot—is to first order irrelevant for this phenomenon to be observed. Coulomb blockade has also been observed in two-dimensional arrays of normal-metal tunnel junctions, but the relatively large capacitances of these micrometre-sized metal islands results in a small charging energy, and so the effect can be seen only at extremely low temperatures. Here we demonstrate that organic thin-film transistors based on highly ordered molecular materials can, to first order, also be considered as an array of sites separated by tunnel resistances. And as a result of the sub-nanometre sizes of the sites (the individual molecules), and hence their small capacitances, the charging energy dominates at room temperature. Conductivity measurements as a function of both gate bias and temperature reveal the presence of thermally activated transport, consistent with the conventional model of Coulomb blockade.

    Widespread sensorimotor and frontal cortical atrophy in Amyotrophic Lateral Sclerosis

    Get PDF
    BACKGROUND: Widespread cortical atrophy in Amyotrophic Lateral Sclerosis (ALS) has been described in neuropathological studies. The presence of cortical atrophy in conventional and scientific neuroimaging has been a matter of debate. In studies using computertomography, positron emission tomography, proton magnetic resonance spectroscopy and conventional T2-weighted and proton-weighted images, results have been variable. Recent morphometric studies by magnetic resonance imaging have produced conflicting results regarding the extent of grey and white matter involvement in ALS patients. METHODS: The authors used optimized voxel-based morphometry as an unbiased whole brain approach to detect differences between regional grey and white matter volumes. Seventeen patients with a diagnosis of ALS according to El-Escorial criteria and seventeen age-matched controls received a high resolution anatomical T1 scan. RESULTS: In ALS patients regional grey matter volume (GMV) reductions were found in the pre- and postcentral gyrus bilaterally which extended to premotor, parietal and frontal regions bilaterally compared with controls (p < 0.05, corrected for the entire volume). The revised ALS functional rating scale showed a positive correlation with GMV reduction of the right medial frontal gyrus corresponding to the dorsolateral prefrontal cortex. No significant differences were found for white matter volumes or when grey and white matter density images were investigated. There were no further correlations with clinical variables found. CONCLUSION: In ALS patients, primary sensorimotor cortex atrophy can be regarded as a prominent feature of the disease. Supporting the concept of ALS being a multisytem disorder, our study provides further evidence for extramotor involvement which is widespread. The lack of correlation with common clinical variables probably reflects the fact that heterogeneous disease processes underlie ALS. The discrepancy within all published morphometric studies in ALS so far may be related to differences in patient cohorts and several methodological factors of the data analysis process. Longitudinal studies are required to further clarify the time course and distribution of grey and white matter pathology during the course of ALS

    Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment

    Get PDF
    International audiencePURPOSE: Positron emission tomography (PET) imaging of brain amyloid load has been suggested as a core biomarker for Alzheimer's disease (AD). The aim of this study was to test the feasibility of using PET imaging with (18)F-AV-45 (florbetapir) in a routine clinical environment to differentiate between patients with mild to moderate AD and mild cognitive impairment (MCI) from normal healthy controls (HC). METHODS: In this study, 46 subjects (20 men and 26 women, mean age of 69.0 ± 7.6 years), including 13 with AD, 12 with MCI and 21 HC subjects, were enrolled from three academic memory clinics. PET images were acquired over a 10-min period 50 min after injection of florbetapir (mean ± SD of radioactivity injected, 259 ± 57 MBq). PET images were assessed visually by two individuals blinded to any clinical information and quantitatively via the standard uptake value ratio (SUVr) in the specific regions of interest, which were defined in relation to the cerebellum as the reference region. RESULTS: The mean values of SUVr were higher in AD patients (median 1.20, Q1-Q3 1.16-1.30) than in HC subjects (median 1.05, Q1-Q3 1.04-1.08; p = 0.0001) in the overall cortex and all cortical regions (precuneus, anterior and posterior cingulate, and frontal median, temporal, parietal and occipital cortex). The MCI subjects also showed a higher uptake of florbetapir in the posterior cingulate cortex (median 1.06, Q1-Q3 0.97-1.28) compared with HC subjects (median 0.95, Q1-Q3 0.82-1.02; p = 0.03). Qualitative visual assessment of the PET scans showed a sensitivity of 84.6% (95% CI 0.55-0.98) and a specificity of 38.1% (95% CI 0.18-0.62) for discriminating AD patients from HC subjects; however, the quantitative assessment of the global cortex SUVr showed a sensitivity of 92.3% and specificity of 90.5% with a cut-off value of 1.122 (area under the curve 0.894). CONCLUSION: These preliminary results suggest that PET with florbetapir is a safe and suitable biomarker for AD that can be used routinely in a clinical environment. However, the low specificity of the visual PET scan assessment could be improved by the use of specific training and automatic or semiautomatic quantification tools

    Biomarker candidates of neurodegeneration in Parkinson’s disease for the evaluation of disease-modifying therapeutics

    Get PDF
    Reliable biomarkers that can be used for early diagnosis and tracking disease progression are the cornerstone of the development of disease-modifying treatments for Parkinson’s disease (PD). The German Society of Experimental and Clinical Neurotherapeutics (GESENT) has convened a Working Group to review the current status of proposed biomarkers of neurodegeneration according to the following criteria and to develop a consensus statement on biomarker candidates for evaluation of disease-modifying therapeutics in PD. The criteria proposed are that the biomarker should be linked to fundamental features of PD neuropathology and mechanisms underlying neurodegeneration in PD, should be correlated to disease progression assessed by clinical rating scales, should monitor the actual disease status, should be pre-clinically validated, and confirmed by at least two independent studies conducted by qualified investigators with the results published in peer-reviewed journals. To date, available data have not yet revealed one reliable biomarker to detect early neurodegeneration in PD and to detect and monitor effects of drug candidates on the disease process, but some promising biomarker candidates, such as antibodies against neuromelanin, pathological forms of α-synuclein, DJ-1, and patterns of gene expression, metabolomic and protein profiling exist. Almost all of the biomarker candidates were not investigated in relation to effects of treatment, validated in experimental models of PD and confirmed in independent studies

    Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease

    Get PDF
    Biomarkers of brain Aβ amyloid deposition can be measured either by cerebrospinal fluid Aβ42 or Pittsburgh compound B positron emission tomography imaging. Our objective was to evaluate the ability of Aβ load and neurodegenerative atrophy on magnetic resonance imaging to predict shorter time-to-progression from mild cognitive impairment to Alzheimer’s dementia and to characterize the effect of these biomarkers on the risk of progression as they become increasingly abnormal. A total of 218 subjects with mild cognitive impairment were identified from the Alzheimer’s Disease Neuroimaging Initiative. The primary outcome was time-to-progression to Alzheimer’s dementia. Hippocampal volumes were measured and adjusted for intracranial volume. We used a new method of pooling cerebrospinal fluid Aβ42 and Pittsburgh compound B positron emission tomography measures to produce equivalent measures of brain Aβ load from either source and analysed the results using multiple imputation methods. We performed our analyses in two phases. First, we grouped our subjects into those who were ‘amyloid positive’ (n = 165, with the assumption that Alzheimer's pathology is dominant in this group) and those who were ‘amyloid negative’ (n = 53). In the second phase, we included all 218 subjects with mild cognitive impairment to evaluate the biomarkers in a sample that we assumed to contain a full spectrum of expected pathologies. In a Kaplan–Meier analysis, amyloid positive subjects with mild cognitive impairment were much more likely to progress to dementia within 2 years than amyloid negative subjects with mild cognitive impairment (50 versus 19%). Among amyloid positive subjects with mild cognitive impairment only, hippocampal atrophy predicted shorter time-to-progression (P < 0.001) while Aβ load did not (P = 0.44). In contrast, when all 218 subjects with mild cognitive impairment were combined (amyloid positive and negative), hippocampal atrophy and Aβ load predicted shorter time-to-progression with comparable power (hazard ratio for an inter-quartile difference of 2.6 for both); however, the risk profile was linear throughout the range of hippocampal atrophy values but reached a ceiling at higher values of brain Aβ load. Our results are consistent with a model of Alzheimer’s disease in which Aβ deposition initiates the pathological cascade but is not the direct cause of cognitive impairment as evidenced by the fact that Aβ load severity is decoupled from risk of progression at high levels. In contrast, hippocampal atrophy indicates how far along the neurodegenerative path one is, and hence how close to progressing to dementia. Possible explanations for our finding that many subjects with mild cognitive impairment have intermediate levels of Aβ load include: (i) individual subjects may reach an Aβ load plateau at varying absolute levels; (ii) some subjects may be more biologically susceptible to Aβ than others; and (iii) subjects with mild cognitive impairment with intermediate levels of Aβ may represent individuals with Alzheimer’s disease co-existent with other pathologies
    corecore