201 research outputs found

    Reduced coupling between offline neural replay events and default mode network activation in schizophrenia

    Get PDF
    Schizophrenia is characterized by an abnormal resting state and default mode network brain activity. However, despite intense study, the mechanisms linking default mode network dynamics to neural computation remain elusive. During rest, sequential hippocampal reactivations, known as 'replay', are played out within default mode network activation windows, highlighting a potential role of replay-default mode network coupling in memory consolidation and model-based mental simulation. Here, we test a hypothesis of reduced replay-default mode network coupling in schizophrenia, using magnetoencephalography and a non-spatial sequence learning task designed to elicit off-task (i.e. resting state) neural replay. Participants with a diagnosis of schizophrenia (n = 28, mean age 28.2 years, range 20-40, 6 females, 13 not taking antipsychotic medication) and non-clinical control participants (n = 29, mean age 28.1 years, range 18-45, 6 females, matched at group level for age, intelligence quotient, gender, years in education and working memory) underwent a magnetoencephalography scan both during task completion and during a post-task resting state session. We used neural decoding to infer the time course of default mode network activation (time-delay embedding hidden Markov model) and spontaneous neural replay (temporally delayed linear modelling) in resting state magnetoencephalography data. Using multiple regression, we then quantified the extent to which default mode network activation was uniquely predicted by replay events that recapitulated the learned task sequences (i.e. 'task-relevant' replay-default mode network coupling). In control participants, replay-default mode network coupling was augmented following sequence learning, an augmentation that was specific for replay of task-relevant (i.e. learned) state transitions. This task-relevant replay-default mode network coupling effect was significantly reduced in schizophrenia (t(52) = 3.93, P = 0.018). Task-relevant replay-default mode network coupling predicted memory maintenance of learned sequences (ρ(52) = 0.31, P = 0.02). Importantly, reduced task-relevant replay-default mode network coupling in schizophrenia was not explained by differential replay or altered default mode network dynamics between groups nor by reference to antipsychotic exposure. Finally, task-relevant replay-default mode network coupling during rest correlated with stimulus-evoked default mode network modulation as measured in a separate task session. In the context of a proposed functional role of replay-default mode network coupling, our findings shed light on the functional significance of default mode network abnormalities in schizophrenia and provide for a consilience between task-based and resting state default mode network findings in this disorder

    Bayesian Joint Detection-Estimation of cerebral vasoreactivity from ASL fMRI data

    Get PDF
    International audienceAlthough the study of cerebral vasoreactivity using fMRI is mainly conducted through the BOLD fMRI modality, owing to its relatively high signal-to-noise ratio (SNR), ASL fMRI provides a more interpretable measure of cerebral vasoreactivity than BOLD fMRI. Still, ASL suffers from a low SNR and is hampered by a large amount of physiological noise. The current contribution aims at improving the re- covery of the vasoreactive component from the ASL signal. To this end, a Bayesian hierarchical model is proposed, enabling the recovery of per- fusion levels as well as fitting their dynamics. On a single-subject ASL real data set involving perfusion changes induced by hypercapnia, the approach is compared with a classical GLM-based analysis. A better goodness-of-fit is achieved, especially in the transitions between baseline and hypercapnia periods. Also, perfusion levels are recovered with higher sensitivity and show a better contrast between gray- and white matter

    Ensemble Learning Incorporating Uncertain Registration

    Full text link

    Evaluating functional brain organization in individuals and identifying contributions to network overlap

    Get PDF
    Individual differences in the spatial organization of resting-state networks have received increased attention in recent years. Measures of individual-specific spatial organization of brain networks and overlapping network organization have been linked to important behavioral and clinical traits and are therefore potential biomarker targets for personalized psychiatry approaches. To better understand individual-specific spatial brain organization, this paper addressed three key goals. First, we determined whether it is possible to reliably estimate weighted (non-binarized) resting-state network maps using data from only a single individual, while also maintaining maximum spatial correspondence across individuals. Second, we determined the degree of spatial overlap between distinct networks, using test-retest and twin data. Third, we systematically tested multiple hypotheses (spatial mixing, temporal switching, and coupling) as candidate explanations for why networks overlap spatially. To estimate weighted network organization, we adopt the Probabilistic Functional Modes (PROFUMO) algorithm, which implements a Bayesian framework with hemodynamic and connectivity priors to supplement optimization for spatial sparsity/independence. Our findings showed that replicable individual-specific estimates of weighted resting-state networks can be derived using high-quality fMRI data within individual subjects. Network organization estimates using only data from each individual subject closely resembled group-informed network estimates (which was not explicitly modeled in our individual-specific analyses), suggesting that cross-subject correspondence was largely maintained. Furthermore, our results confirmed the presence of spatial overlap in network organization, which was replicable across sessions within individuals and in monozygotic twin pairs. Intriguingly, our findings provide evidence that overlap between 2-network pairs is indicative of coupling. These results suggest that regions of network overlap concurrently process information from both contributing networks, potentially pointing to the role of overlapping network organization in the integration of information across multiple brain systems

    Comparing families of dynamic causal models

    Get PDF
    Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of that model. This “best model” approach is very useful but can become brittle if there are a large number of models to compare, and if different subjects use different models. To overcome this shortcoming we propose the combination of two further approaches: (i) family level inference and (ii) Bayesian model averaging within families. Family level inference removes uncertainty about aspects of model structure other than the characteristic of interest. For example: What are the inputs to the system? Is processing serial or parallel? Is it linear or nonlinear? Is it mediated by a single, crucial connection? We apply Bayesian model averaging within families to provide inferences about parameters that are independent of further assumptions about model structure. We illustrate the methods using Dynamic Causal Models of brain imaging data

    Integrating cross-frequency and within band functional networks in resting-state MEG: A multi-layer network approach

    Get PDF
    Neuronal oscillations exist across a broad frequency spectrum, and are thought to provide a mechanism of interaction between spatially separated brain regions. Since ongoing mental activity necessitates the simultaneous formation of multiple networks, it seems likely that the brain employs interactions within multiple frequency bands, as well as cross-frequency coupling, to support such networks. Here, we propose a multi-layer network framework that elucidates this pan-spectral picture of network interactions. Our network consists of multiple layers (frequency-band specific networks) that influence each other via inter-layer (cross-frequency) coupling. Applying this model to MEG resting-state data and using envelope correlations as connectivity metric, we demonstrate strong dependency between within layer structure and inter-layer coupling, indicating that networks obtained in different frequency bands do not act as independent entities. More specifically, our results suggest that frequency band specific networks are characterised by a common structure seen across all layers, superimposed by layer specific connectivity, and inter-layer coupling is most strongly associated with this common mode. Finally, using a biophysical model, we demonstrate that there are two regimes of multi-layer network behaviour; one in which different layers are independent and a second in which they operate highly dependent. Results suggest that the healthy human brain operates at the transition point between these regimes, allowing for integration and segregation between layers. Overall, our observations show that a complete picture of global brain network connectivity requires integration of connectivity patterns across the full frequency spectrum

    Efficient posterior probability mapping using savage-dickey ratios.

    Get PDF
    Statistical Parametric Mapping (SPM) is the dominant paradigm for mass-univariate analysis of neuroimaging data. More recently, a Bayesian approach termed Posterior Probability Mapping (PPM) has been proposed as an alternative. PPM offers two advantages: (i) inferences can be made about effect size thus lending a precise physiological meaning to activated regions, (ii) regions can be declared inactive. This latter facility is most parsimoniously provided by PPMs based on Bayesian model comparisons. To date these comparisons have been implemented by an Independent Model Optimization (IMO) procedure which separately fits null and alternative models. This paper proposes a more computationally efficient procedure based on Savage-Dickey approximations to the Bayes factor, and Taylor-series approximations to the voxel-wise posterior covariance matrices. Simulations show the accuracy of this Savage-Dickey-Taylor (SDT) method to be comparable to that of IMO. Results on fMRI data show excellent agreement between SDT and IMO for second-level models, and reasonable agreement for first-level models. This Savage-Dickey test is a Bayesian analogue of the classical SPM-F and allows users to implement model comparison in a truly interactive manner

    Glucocorticoids Decrease Hippocampal and Prefrontal Activation during Declarative Memory Retrieval in Young Men

    Get PDF
    Glucocorticoids (GCs, cortisol in human) are associated with impairments in declarative memory retrieval. Brain regions hypothesized to mediate these effects are the hippocampus and prefrontal cortex (PFC). Our aim was to use fMRI in localizing the effects of GCs during declarative memory retrieval. Therefore, we tested memory retrieval in 21 young healthy males in a randomized placebo-controlled crossover design. Participants encoded word lists containing neutral and emotional words 1 h prior to ingestion of 20 mg hydrocortisone. Memory retrieval was tested using an old/new recognition paradigm in a rapid event-related design. It was found that hydrocortisone decreased brain activity in both the hippocampus and PFC during successful retrieval of neutral words. These observations are consistent with previous animal and human studies suggesting that glucocorticoids modulate both hippocampal and prefrontal brain regions that are crucially involved in memory processing

    Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep

    Get PDF
    The modern understanding of sleep is based on the classification of sleep into stages defined by their electroencephalography (EEG) signatures, but the underlying brain dynamics remain unclear. Here we aimed to move significantly beyond the current state-of-the-art description of sleep, and in particular to characterise the spatiotemporal complexity of whole-brain networks and state transitions during sleep. In order to obtain the most unbiased estimate of how whole-brain network states evolve through the human sleep cycle, we used a Markovian data-driven analysis of continuous neuroimaging data from 57 healthy participants falling asleep during simultaneous functional magnetic resonance imaging (fMRI) and EEG. This Hidden Markov Model (HMM) facilitated discovery of the dynamic choreography between different whole-brain networks across the wake-non-REM sleep cycle. Notably, our results reveal key trajectories to switch within and between EEG-based sleep stages, while highlighting the heterogeneities of stage N1 sleep and wakefulness before and after sleep.</p
    corecore