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Reduced coupling between offline neural 
replay events and default mode network 
activation in schizophrenia
Matthew M. Nour,1,2,3,4 Yunzhe Liu,1,5,6 Cameron Higgins,3,4 Mark W. Woolrich3,4 and 
Raymond J. Dolan1,2,5

Schizophrenia is characterized by an abnormal resting state and default mode network brain activity. However, despite intense study, 
the mechanisms linking default mode network dynamics to neural computation remain elusive. During rest, sequential hippocampal 
reactivations, known as ‘replay’, are played out within default mode network activation windows, highlighting a potential role of re
play-default mode network coupling in memory consolidation and model-based mental simulation. Here, we test a hypothesis of re
duced replay-default mode network coupling in schizophrenia, using magnetoencephalography and a non-spatial sequence learning 
task designed to elicit off-task (i.e. resting state) neural replay. Participants with a diagnosis of schizophrenia (n = 28, mean age 28.2 
years, range 20–40, 6 females, 13 not taking antipsychotic medication) and non-clinical control participants (n = 29, mean age 28.1 
years, range 18–45, 6 females, matched at group level for age, intelligence quotient, gender, years in education and working memory) 
underwent a magnetoencephalography scan both during task completion and during a post-task resting state session. We used neural 
decoding to infer the time course of default mode network activation (time-delay embedding hidden Markov model) and spontaneous 
neural replay (temporally delayed linear modelling) in resting state magnetoencephalography data. Using multiple regression, we then 
quantified the extent to which default mode network activation was uniquely predicted by replay events that recapitulated the learned 
task sequences (i.e. ‘task-relevant’ replay-default mode network coupling). In control participants, replay-default mode network coup
ling was augmented following sequence learning, an augmentation that was specific for replay of task-relevant (i.e. learned) state tran
sitions. This task-relevant replay-default mode network coupling effect was significantly reduced in schizophrenia (t(52) = 3.93, P =  
0.018). Task-relevant replay-default mode network coupling predicted memory maintenance of learned sequences (ρ(52) = 0.31, P =  
0.02). Importantly, reduced task-relevant replay-default mode network coupling in schizophrenia was not explained by differential 
replay or altered default mode network dynamics between groups nor by reference to antipsychotic exposure. Finally, task-relevant 
replay-default mode network coupling during rest correlated with stimulus-evoked default mode network modulation as measured in 
a separate task session. In the context of a proposed functional role of replay-default mode network coupling, our findings shed light 
on the functional significance of default mode network abnormalities in schizophrenia and provide for a consilience between task- 
based and resting state default mode network findings in this disorder.
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Graphical Abstract

Introduction
Humans spend much of the time disengaged from explicit 
goal-directed behaviour. During these (offline) ‘rest periods’, 
spontaneous brain activity transitions through attractor-like 
‘resting state networks’ (RSNs), each exhibiting a distinct pat
tern of activity covariation across brain regions (i.e. functional 
connectivity).1-5 In psychiatry, the default mode network 
(DMN), a collection of (predominantly midline) brain regions 
exhibiting high resting metabolism and marked task-induced 
deactivations,5,6 has attracted particular attention.7-15 In 
schizophrenia—a debilitating neuropsychiatric condition 
with a lifetime prevalence approaching 1%16—DMN abnor
malities include disturbances of intra- and inter-network func
tional connectivity during rest8,9,13,17,18 and attenuated DMN 
deactivation during task performance.19-27 However, despite 
over a decade of intense study, insight into the relationship 

between DMN dynamics and task-related cognition in schizo
phrenia is lacking owing to difficulties in indexing the repre
sentational content of brain activity measured at rest.28,29

Neural decoding provides a window into the role of offline 
brain activity in cognition,28 enabling investigators to track 
spontaneous reactivations of task-related neural activity pat
terns (‘neural representations’) during rest.28 Sequential reacti
vations during rest (or planning) periods have been shown to 
‘replay’ learned associations between task states,28,30-33 in a 
manner thought to support memory consolidation, credit as
signment and inference.34-40 Recent studies in humans and non- 
human primates suggest that replay events and DMN activa
tion are temporally coordinated during rest.41,42

Replay-DMN coupling might provide a temporal window for 
offline updating of abstract internal representations (thought 
to be supported by DMN43-46) and allow a demarcation be
tween task-evoked and offline neural computations.41 These 
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functions appear pertinent to understanding the brain basis of 
psychotic symptoms, as in schizophrenia, which span aberra
tions of belief (e.g. paranoia) and internally generated percep
tual experiences (e.g. hallucinations).

Replay signatures have been shown to be abnormal in peo
ple with a diagnosis of schizophrenia47 and genetic mouse 
models of the condition48-50 (e.g. impaired replay for in
ferred relationships and augmented replay-associated hippo
campal ripple oscillations).Yet, these findings have not yet 
been related to previously reported disturbances of DMN ac
tivation in the condition. Here, we investigate replay-DMN 
coupling in schizophrenia using magnetoencephalography 
(MEG) data set and multivariate neural decoding. We relate 
this neural effect to behavioural measures of learning and ab
normalities in task-evoked DMN deactivation. To 
anticipate our results, we show that schizophrenia is asso
ciated with impaired replay-DMN coupling during rest, spe
cifically for replay events that mirror a learned task sequence 
(i.e. task-relevant replay events), indicating a potential role 
in memory consolidation. In line with this interpretation, 
replay-DMN coupling predicted mnemonic maintenance of 
task structural knowledge at the end of the scan.

Materials and methods
Data sets and participants
We availed of two existing MEG data sets. Data set A,47 which 
forms the focus of the primary replay-DMN analyses, com
prises MEG data (see below) from 28 people with a diagnosis 
of schizophrenia (mean age 28.2 years, range 20–40, 6 females, 
diagnosis assessed with the Structured Clinical Interview for 
DSM-IV-TR, Axis I Disorders, SCID-I51) recruited from 
London community psychosis NHS clinics and 29 healthy vo
lunteers (mean age 28.1 years, range 18–45, 6 females) re
cruited from the same geographical area through online 
advertisements. Thirteen patients were not taking dopamine 
2/3 receptor (D2/3R) antagonist medication (one medication 
naïve). Groups were matched for age, gender, IQ and educa
tional attainment (see Supplementary Table 1 for demographics 
and Supplementary Materials and Methods for exclusion cri
teria and clinical assessment). Data set B,4 used to train the hid
den Markov model (HMM) RSN observation models, 
comprises 5-min resting state MEG scans and structural MRI 
scans from 55 healthy volunteer participants (mean age 26.5 
years, range 18–48, 20 females). Studies were approved by 
the London Westminster NHS Research Ethics Committee 
(15/LO/1361) and University of Nottingham Medical School 
Research Ethics Committee. Participants’ consent was obtained 
according to the Declaration of Helsinki.

Replay experimental protocol 
(Data set A)
Participants completed three identical sessions of an applied 
learning task during MEG scanning, in which they needed to 

infer how eight task pictures formed two sequences ([A →  
B → C → D] and [A’ → B’ → C’ → D’], termed ‘structural se
quences’). This task has previously been shown to elicit spon
taneous neural replay of learned sequential relationships 
during a post-learning resting session.30,47 During each ses
sion, participants passively observed three unique ‘visual se
quences’ (four times each). Each ‘visual sequence’ contained 
four task pictures that were presented in a ‘scrambled’ order 
relative to the underlying ‘structural sequences’ (e.g. [C’ →  
D’ → C → D], [B → C → B’ → C’] and [A’ → B’ → A → B]). 
Prior to the scan, participants were explicitly taught an ‘un
scrambling rule’ that described in full the relationship be
tween these scrambled (‘visual’) sequences and the 
underlying (‘structural’) sequences. This rule stated that 
only the first and last transition in each ‘visual sequence’ re
flected a true transition in a ‘structural sequence’. During 
MEG, when presented with a new set of stimuli, participants 
could use this knowledge to infer the correct ‘structural’ re
lationships from the presented scrambled ‘visual sequences’. 
They were not required to respond in any way while viewing 
the ‘visual sequences’. After three applied learning sessions, 
participants completed a 5-min ‘post-learning’ MEG resting 
state scan (‘POST’, eyes open). Participants completed a 
12-question ‘quiz’ after each applied learning session, and 
immediately following the post-learning rest session. This 
enabled us to confirm that patients and controls had equiva
lent knowledge of structural sequences after three sessions of 
applied learning (‘Quiz 3’, immediately prior to the post- 
learning rest) and immediately after post-learning rest 
(‘post-rest quiz’) (patients showed learning impairments 
after the first and second applied learning sessions relative 
to controls; for full behavioural results, see Nour et al.47).

Prior to the applied learning MEG sessions, participants 
completed a ‘pre-learning’ MEG resting state session 
(‘PRE’, 5 min, eyes open) and a stimulus localizer task (to 
gather visually evoked neural data used to train neural clas
sifiers, below). At the end of the scanning session, partici
pants completed a final position probe task to assess their 
knowledge of the abstract task structure (i.e. which picture 
occupied which ordinal position in the ‘structural sequence’). 
See Fig. 1 for MEG task schematic and Supplementary 
Materials and Methods for further details).

MEG acquisition and preprocessing
In both Data sets A and B, MEG was recorded continuously 
at 1200 samples/s using a whole-head 275-channel axial 
gradiometer system (CTF Omega, VSM MedTech). 
Preprocessing pipelines for Data sets A and B were identical 
to our previous healthy volunteer replay RSN report41 (see 
Supplementary Materials and Methods for further details).

Replay analysis pipeline
Replay detection analysis was conducted in sensor space. 
Readers are directed to our previous report for full details.47

Briefly, for each participant, we trained a separate sparse 
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logistic regression classifier for each MEG task picture, using 
labelled MEG sensor data from stimulus localizer (a separate 
family of classifiers trained at each time point of the 
stimulus-evoked response). We identified the time point of 

peak decodability at the group level in cross validation 
(180 ms after stimulus onset), and for each participant, we 
applied these decoders to MEG rest data (pre- and post- 
learning). This enables us to derive a state reactivation time 

Figure 1 MEG task outline. The MEG session began with a 5-min eyes open (pre-learning) rest session and a stimulus localizer. Participants 
then completed three applied learning sessions (∼5 min each), in which they were shown ‘visual sequences’ containing eight task pictures in a 
scrambled order and needed to infer the correct sequential relationships between them (i.e. task ‘structural sequences’) using an unscrambling rule 
learned during a pre-scan training visit. Applied learning was followed by a second 5-min eyes open (post-learning) rest session. Structural 
knowledge was assessed in several quiz sessions [Q1, Q2, Q3 and post-rest (PR)]. The scan session finished with a position probe task to assess 
knowledge maintenance. See ‘Materials and Methods’ section for full details, and Nour et al.,47 for behavioral and replay findings.

Figure 2 Decoding spontaneous replay and DMN activations during rest. ‘Dual decoding’ analysis pipeline. We decoded two families of 
activation time courses from MEG data of each participant: the first is a family of resting state network (RSN) state activation time courses (top, 
total n = 12, 4 shown only) on MEG data in source space, using a hidden Markov model time-delay embedding (TDE-HMM) framework,4,41,52 and 
the second is a family of task state reactivation time courses (bottom, total n = 8, 4 shown only), in sensor space, using a temporally delayed linear 
modelling (TDLM) framework.33,47 See ‘Materials and Methods’ section for details.
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series for each task picture (e.g. reactivation time course of 
picture A = σ(XβA), where X is the [time, sensors + 1] matrix 
of MEG data, βA is the [sensors + 1, 1] trained classifier for 
State A, and σ(·) is the logistic sigmoid transform). We 
used the state-specific reactivation time series to generate a 
‘replay probability’ time course for each unique state → state 
replay transition (e.g. 64 in total reflecting 8 ∗ 8 possible state 
pairs). For example, for transition [A → B] we computed the 
element-wise product of the reactivation time course of State 
A and time-lagged reactivation time course of State B (i.e. 
R[A→B]

t = At∗Bt+τ, where τ = 40 ms, corresponding to the 
time lag of peak replay detected in the present data set47

and earlier reports in healthy volunteers30,31). We thre
sholded this probabilistic ‘replay evidence’ output at the 
transition-specific 99th percentile41 to provide a time course 
of ‘replay onsets’ used throughout this paper (see Fig. 2 and 
Supplementary Materials and Methods for further details).

RSN modelling
The RSN analysis pipeline was conducted in source space 
(see Supplementary Materials and Methods). We use an es
tablished time-delay embedding HMM (TDE-HMM) ap
proach to RSN analysis to infer the activation time courses 
of each RSN for each participant and session separate
ly.4,41,52 Briefly, the approach assumes that at each time 
point, t, the brain is in one of K ‘latent states’ (each a distinct 
RSN), which are parameterized as probability distributions 
over observable MEG data features that capture each 
RSN’s functional connectivity pattern (i.e. ‘RSN observation 
models’), and where the latent state → state transition prob
abilities respect a first-order Markovian property. See 
Supplementary Materials and Methods for mathematical de
tails, including model fitting.

In the present work, we use a two-step approach to RSN 
activation time course inference, as in Higgins et al.41 We first 
fitted the complete TDE-HMM to Data set B (n = 55 healthy 
control participants), to infer the probabilistic observation 
models for each RSN (corresponding to the RSN functional 
connectivity patterns). As in Higgins et al.,41 we set K to 12 
and identify RSN2 as the DMN owing to high-power in med
ial frontal and temporal regions and coherent oscillations in 
the lateral parietal cortex (Supplementary Fig. 1 for fitted ob
servation models for each RSN). We then applied the fitted 
observation models (one for each of 12 RSNs) to MEG 
data from Data set A (clinical data set), to infer participant- 
specific RSN activation time courses and latent state transi
tion probabilities. This two-step procedure enables a direct 
comparison between our results and previously published 
MEG results while also affording greater confidence with re
spect to the anatomical distributions of activity for each RSN, 
owing to availability of high-resolution MRI used for MEG 
co-registration in Data set B.4

The HMM procedure yields a [time, RSN] activation time 
course matrix for each participant and session in Data set 
A. Prior to replay- (and stimulus-) evoked RSN activation 
analysis, we first mean-centred the columns of this RSN 

activation matrix for each participant and session.41 We 
found no significant differences between patients and con
trols in dynamical or spectral properties of inferred RSN state 
activations (see Fig. 2, Supplementary Fig. 2 and 
Supplementary Results).

Replay-evoked RSN activation
To investigate if RSN activation dynamics were modulated 
by spontaneous replay events, we epoched the [time, RSN] 
activation probability matrix from −500 to +500 ms with re
spect to identified replay onsets. We performed this epoching 
procedure separately for replay events comprising each of 64 
unique state → state transitions (all ordered pairs of eight 
task states). Replay event ‘onset’ was defined as a time point 
exhibiting replay evidence exceeding the transition- and 
session-specific 99th percentile41 (see Supplementary 
Materials and Methods for further details of replay epoching 
procedure). We found no significant difference in number of 
included ‘replay onsets’ between patient or control groups 
for any replay transition (see Supplementary Results). We 
then generated a single [time, RSN] matrix for each replay 
transition (n = 64) by averaging the replay-evoked activation 
profile over all included replay events for each transition sep
arately. We repeated this procedure for each participant and 
rest session (pre- and post-learning) separately.

This transition-specific epoching procedure was critical in 
allowing us to examine whether replay-DMN coupling was 
modulated by replay content (i.e. which state pair was re
played, see Supplementary Materials and Methods for further 
discussion). Our primary question was whether replay RSN 
coupling was greater for replay events containing ‘task rele
vant’ state pairs (i.e. replay events where the two reactivated 
states were adjacent in the learned ‘structural sequences’), com
pared to that for a coupling averaged over all possible state →  
state transitions (n = 64, a ‘non-specific’ effect). We formally 
addressed this using multiple regression. Specifically, for each 
peri-replay time point (−500 to +500 ms), RSN, rest session 
and participant, we regressed the [64, 1] vector of RSN activa
tion probabilities (one entry for each replay transition, e.g. 
[A → B], [B → C], …) onto a design matrix comprising a regres
sor for correctly inferred (i.e. ‘structurally adjacent’ or ‘task 
relevant’) transitions and a constant term that models a non- 
specific (baseline) replay RSN association. When applied 
to the DMN activation time course, this yields regression coef
ficient estimates for both the task-relevant replay effects of 
interest (βinferred[DMN]) and background non-specific effects 
(βnon-specific[DMN]) at every peri-replay time point. Contrasting 
these effects from pre-learning rest to post-learning rest yields 
an estimate of the boosting of such task-relevant replay RSN 
coupling after learning (Δβinferred[DMN] = βinferred[DMN][POST]  

− βinferred[DMN][PRE]). See Supplementary Materials and 
Methods for further details.

We also used a complementary approach to examine glo
bal patterns of replay-evoked RSN dynamics that span sev
eral time points and RSNs. Using principal component 
analysis (PCA), we projected the replay-evoked RSN 
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activation data (for each participant, an [event, time ∗ RSN] 
matrix of evoked RSN activations, where ‘events’ are n = 64 
individual replay transitions, and the [time, RSN] data corre
sponding to each ‘event’ has been vectorized into a single di
mension) onto new principal component (PC) axes (yielding 
an [event, PC] data matrix). Here, each PC axis is defined as a 
[time, RSN] coefficient matrix capturing an orthogonal axis 
of variation in the observed data. The first PC, which cap
tures the ‘principal axis of variation’ in the observed MEG 
data, demonstrates an expected ‘DMN activation’ profile 
(see Fig. 3F and Supplementary Fig. 5). For each participant, 
we can then quantify the expression of this ‘DMN activation’ 
profile as a single number for each replay transition (first PC 
score) and identify the extent to which this expression profile 
is uniquely associated with task-relevant replay events using 
multiple regression, as above (task-relevant replay coefficient 
denoted βinferred[PC]). To ensure that our projection from na
tive to PC space is identical for all participants and across 
both pre- and post-learning rest sessions, we conduct the 
PCA on the evoked neural data concatenated over all parti
cipants and rest sessions (see Supplementary Materials and 
Methods for complete details).

Stimulus-evoked RSN activation
Finally, we use MEG data from the Stimulus Localizer task 
to examine stimulus-evoked RSN activation dynamics. 
Here, we epoched the [time, RSN] activation probability ma
trix from −500 to +500 ms with respect stimulus onset in 
each trial (time points before 0 ms represent a grey screen 
inter-trial interval period) and used a similar PCA approach 
to identify the axis of maximal variation in this 
stimulus-evoked RSN activation dynamics (here the first 
PC reveals a ‘DMN deactivation’ profile, Fig. 4B) (see 
Supplementary Materials and Methods).

Statistical analysis and software
We control for multiple statistical comparisons throughout 
and consider family-wise error corrected P < 0.05 (two- 
tailed) as statistically significant, unless otherwise stated. 
Specifically, we used non-parametric permutation tests to as
sess the statistical significance of effects where we wished to 
control for multiple comparisons across time points (i.e. 
evoked RSN dynamics) or frequencies (i.e. RSN spectral 
properties) (see Supplementary Materials and Methods for 
mathematical details). When considering single-variable ef
fects or bivariate correlations, we conducted a formal test 
that the effects in question were sampled from a population 
with a normal distribution (Shapiro–Wilk test) prior to using 
parametric tests (e.g. unpaired t-test and Pearson’s correl
ation) and used non-parametric equivalent tests where this 
null hypothesis was rejected at α = 0.05 (e.g. Wilcoxon 
rank sum test for equal medians, correlation and regression 
analyses conducted on rank ordered variables). For between- 
subjects multiple regression analyses, ‘group’ was effects 
coded (patients = −0.5, controls = +0.5) unless otherwise 

stated. For all analyses, summary effects are reported as 
mean ± 1 standard error of the mean (SEM), and two-tailed 
P < 0.05 is deemed significant, unless otherwise stated.

Results
Decoding spontaneous replay and 
DMN activations during rest
Participants completed a sequence learning task during 
MEG, followed by a 5-minute resting state scan (Fig. 1). 
As described in our prior work,30,47 this protocol elicits 
spontaneous neural replay of inferred sequential relation
ships during a post-learning rest session, detected using a 
multivariate neural decoding (see ‘Materials and Methods’ 
section).33 Here, we focus on a whether spontaneous replay 
events during rest co-occur with RSN activations, focusing 
on DMN. We first use a ‘dual decoding’ approach to identify 
sequential task state reactivations (replay) and DMN activa
tion in MEG rest data (see ‘Materials and Methods’ section 
and Fig. 2). We then test whether DMN activation is unique
ly predicted by replay events containing task-relevant (‘in
ferred’) state transitions (i.e. events that replay adjacency 
relationships in the task ‘structural sequences’) using a mul
tiple regression approach (see ‘Materials and Methods’ and 
Fig. 3A).

Patients show reduced replay-DMN 
coupling specific for inferred 
transitions
Control participants alone exhibited a significant increase in 
the degree to which DMN activation was predicted by onset 
of task-relevant replay events (i.e. ‘task-relevant’ 
replay-DMN coupling), from pre- to post-learning rest ses
sions (controls Δβinferred[DMN] = 0.007 ± 0.002, peak-level 
PFWE = 0.036, patients: Δβinferred[DMN] = −0.006 ± 0.002, 
peak-level PFWE = 1.00, non-parametric sign-flip permuta
tion test, right-tailed, effects at 0 ms, controlling for multiple 
comparisons over time, Fig. 3B and C). ‘Task relevant’ 
replay-DMN coupling was significantly greater in control 
participants compared to patients (t(52) = 3.93, peak-level 
PFWE = 0.018, non-parametric group-membership permuta
tion test, two-tailed, effect at 0 ms, controlling for multiple 
comparisons over time, Fig. 3D). For similar results in post- 
learning MEG rest data alone, see Supplementary Fig. 4. As 
expected, we found no significant task-relevant replay-DMN 
coupling during pre-learning rest (Supplementary Fig. 4).

The group difference in task-relevant replay-DMN coup
ling (Δβinferred[DMN]) was not a consequence of impaired 
neural replay in the patient group per se.47 First, we found 
no correlation between Δβinferred[DMN] (at replay onset) and 
replay strength across participants (r(52) = 0.19, P = 0.17, 
Pearson’s correlation, ‘replay strength’ defined as the in
crease in ‘sequenceness’, at 40-ms replay lag, from pre- to 
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Figure 3 Patients show a reduced replay-default mode network (DMN) coupling specific for inferred transitions. (A) For each 
participant, we calculated the mean DMN activation time course ±500 ms around replay onset for each unique state → state transition (8 ∗ 8 = 64 
unique pairwise transitions. Illustrative transition magnified on left). For each participant and peri-replay time-point in turn, we then regressed a 
[64, 1] vector of DMN activation probabilities (one entry for each replay transition, e.g. [A → B], [B → C], …) onto a design matrix comprising a 
regressor for correctly inferred (i.e. task-relevant ‘structurally adjacent’) transitions (βinferred regressor) and a constant term that models a baseline 
(non-specific) replay-DMN association (βnon-specific). (B) Mean ± SEM (over control participants) change in replay-DMN coupling for inferred 
(structurally adjacent) transitions (inset) from pre- to post-learning rest (Δβinferred[DMN]). Control participants show a significant increase in 
replay-DMN coupling at replay onset at PFWE < 0.05 (horizontal dashed line denotes peak-level PFWE = 0.05, right-tailed, derived from subject sign 
flip permutation test, 500 permutations, controlling for multiple comparisons from −500 to +500 ms from replay onset). For similar results in pre- 
and post-learning MEG rest data alone, see Supplementary Fig. 4. (C) Mean ± SEM (over patient participants) change in replay-DMN coupling for 
inferred transitions (inset) from pre- to post-learning rest, as in (B). Patient participants show no significant increase in Δβinferred[DMN] at any time 
point (right-tailed PFWE < 0.05 significance threshold, as in B). Of note, the negative deflection observed at 0 ms is also non-significant, under a 
two-sided hypothesis (PFWE = 0.15). (D) A formal statistical comparison of group differences (control > patient) for the Δβinferred[DMN] effect in 
(B) and (C), showing a maximal effect at replay onset time (solid black line shows t-statistic from two-sample two-tailed t-test at each time point). 
This effect exceeded peak-level PFWE < 0.05, two-tailed (threshold depicted by horizontal dashed lines, derived from a non-parametric 
group-membership permutation test, 500 permutations, controlling for multiple comparisons from −500 to +500 ms from replay onset). Red 
dashed line shows the group difference effect calculated after first regressing out any variance in replay-DMN coupling that is attributable to the 
replay strength per se at each time point separately (see main text). (E) We repeated the above analysis for all other RSNs and here plot the t-value 
of group differences in ΔβinferredΔβinferred at replay onset (0 ms) for each RSN separately. Horizontal dashed line depicts statistical significance 
threshold for two-sample two-tailed t-test at P < 0.05, Bonferroni corrected for multiple comparisons over RSN states. (F) Top: coefficients of 
the first principal component (PC) of the replay-evoked RSN activation time courses (see ‘Materials and Methods’ section and Supplementary  
Fig. 5). (G) Mean ± SEM (over participants) of the Δβinferred[PC] effect, calculated using a multiple regression approach (as in A), but now using the 
first PC score of the replay-evoked response (as in F) as the dependent variable. Sample for all analyses: patients n = 27, controls n = 27.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad056#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad056#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad056#supplementary-data
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post-learning rest sessions, reported in Nour et al.47). 
Second, the group difference in Δβinferred[DMN] remained sig
nificant after controlling for variance attributable to replay 
strength using multiple regression (Fig. 3D). Furthermore, 
a group difference in Δβinferred[DMN] was not a trivial conse
quence of impoverished knowledge of task structure during 
the post-learning rest session, as both groups exhibited ceil
ing level knowledge on an explicit knowledge quiz both im
mediately prior (quiz after final learning session (Q3): 
controls = 99.4% ± 0.43, patients = 97.8% ± 0.72) and im
mediately after the rest session [post-rest (PR) quiz: controls  
= 99.1% ± 0.51, patients = 98.8% ± 0.58; see Fig. 1 for quiz 
timing]. The group difference in Δβinferred was not significant 
for any other RSN at replay onset (Fig. 3E).

We found a similar pattern of results using a complemen
tary PCA approach, which enables us to quantify 

replay-evoked ensemble activation patterns across time 
points and RSNs for each participant and replay transition 
using a single number (‘Materials and Methods’ section). 
The first PC pattern revealed a ‘DMN-dominant’ profile 
(Fig. 3F). The specificity of this ‘DMN-dominant’ first PC 
for task-relevant replay events was again greater in controls 
compared to patients (Δβinferred[PC] in controls = 0.026 ±  
0.014, in patients = −0.038 ± 0.016, group difference: 
t(52) = −3.02, P = 0.004, two-sample two-tailed t-test, 
Fig. 3G). Intriguingly, patients showed a negative 
Δβinferred[PC] effect, indicating not only that, after learning, 
DMN activation fails to show a boosted coupling to 
task-relevant replay events (compared to non-specific back
ground), but also that in some participants, such coupling 
is reduced. Examining the Δβinferred[PC] effect during post- 
learning rest in isolation revealed a significant effect in 

A B C

Figure 4 Patients exhibit reduced stimulus-evoked RSN modulation. (A) Mean ± SEM (over participants) of stimulus-evoked RSN 
activation dynamics, using MEG data from stimulus-evoked response in stimulus localizer (prior to learning); 0 ms denotes stimulus onset [negative 
times indicate pre-stimulus inter-trial interval (ITI)]. Vertical dashed line denotes time slice from which training data were taken for task state 
decoders (180 ms). * denotes PFWE < 0.05 significant activation time clusters (see Supplementary Materials and Methods). Effects for each 
participant were calculated as the mean effect over all trials in stimulus localizer (note, as this task was completed prior to the learning task, evoked 
neural responses were devoid of any information pertaining to underlying task structure). Patients n = 27, controls n = 28. (B) Top: coefficients of 
the first PC in the stimulus-evoked RSN activation time course (shown in A). PCA aligned to that performed in rest data, shown in Fig. 3. See also 
Supplementary Fig. 5). Bottom: reduced expression of this stimulus-evoked default mode network (DMN) deactivation pattern in patients (mean  
± SEM over participants, where each participant’s value is the mean of the first PC score over all trials of the stimulus localizer). Patients n = 27, 
controls n = 28. (C) Mean ± SEM (over participants) of replay-evoked (black, from 0-ms time sample) and stimulus-evoked (red, from 180-ms time 
sample) effect for each RSN. The replay-DMN association (averaged over all possible task state transitions) is significantly greater than the 
association attributable to a similarity between the DMN observation model and the stimulus-evoked response at the time of decoder training 
(shown in A). This rules out a possibility that the replay-DMN association detected during rest might trivially arise out of a similarity between 
visually evoked neural data (used for task state decoder training) and the DMN observation model.41 * denotes statistical significance (Wilcoxon 
signed rank test for equal medians, paired samples, two-tailed, P < 0.05, Bonferroni corrected for multiple comparisons across RSNs). Patients n =  
27, controls n = 27.

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad056#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad056#supplementary-data
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control participants alone. Δβinferred[PC] was not significantly 
different from 0 in either group during pre-learning rest (see 
Supplementary Results).

Importantly, variance in Δβinferred[PC] was not simply a re
flection of replay strength per se (Pearson’s correlation be
tween Δβinferred[PC] and replay strength across participants: 
r(52) = 0.03, P = 0.82). Moreover, the group difference in 
Δβinferred[PC] remained significant after controlling for D2/3R 
antagonist (antipsychotic) medication exposure (regressing 
Δβinferred[PC] on diagnosis and chlorpromazine-equivalent daily 
dose53 revealed a significant main effect of diagnosis (βdiagnosis  

= −0.052 ± 0.025, t = −2.13, P = 0.038) but not medication 
(βCPZ_dose = −0.0003 ± 0.0004, t = −0.94, P = 0.35), where 
‘diagnosis’ coded as control = 0, patient = 1).

These findings are consistent with an impairment in 
replay-DMN coupling for inferred transitions in patients and 
rule out a possibility that this is a trivial consequence of a failure 
to learn the task sequences, impaired replay per se or medica
tion exposure. We additionally show that a replay-DMN coup
ling, as previously shown in control participants,41 has a 
specificity for replay of events corresponding to (task-relevant) 
transitions that reflect an inferred task structure.

Patients exhibit reduced 
stimulus-evoked RSN modulation
We next asked whether patients also exhibited differences in 
stimulus-evoked RSN dynamics during task conditions and 
whether this on-task (online) effect is related to resting (off
line) RSN dynamics. A comparison between online and off
line RSN dynamics is rendered possible as we use the same 
RSN observation models to infer RSN activation time 
courses in rest and task data (as in Higgins et al.41).

In visually evoked MEG data from stimulus localizer, we 
found no significant DMN activation either at stimulus onset 
(0 ms) nor at the time point from which we subsequently ex
tracted MEG training data for neural state decoders (time of 
peak stimulus decodability, 180 ms), in either patients or 
controls. Instead, we observed a pattern of relative DMN ac
tivation during an inter-trial interval (a stimulus-free ‘rest’ 
period) and relative DMN deactivation ∼200 ms after stimu
lus onset (Fig. 4A). This ‘DMN deactivation’ pattern was 
also reflected in the coefficients of the first PC derived from 
a PCA analysis on stimulus-evoked RSN activation time 
courses (see ‘Materials and Methods’ section). Notably, the 
stimulus-evoked RSN ensemble response, as projected onto 
this first PC, was significantly more pronounced in controls 
relative to patients with schizophrenia (mean first PC scores 
over all trials in controls = 0.82 ± 0.05, patients = −0.10 ±  
0.6, t(53) = 2.34, P = 0.02, two-sample t-test, two-tailed, 
Fig. 4B). This is consistent with functional MRI (fMRI) re
ports of attenuated DMN suppression in schizophrenia dur
ing task performance.19-27

A group difference in stimulus-evoked RSN modulation is 
unlikely to be explained by differential attention during the 
stimulus localizer, as all participants achieved over 90% ac
curacy during an incidental task of attention and semantic 

processing (see Fig. 1 and ‘Materials and Methods’ section), 
with no group difference (patient accuracy = 98.5% ± 0.30, 
control accuracy = 98.3% ± 0.33%, z(53) = −0.62, P =  
0.54, two-sample Wilcoxon rank sum test for equal medians, 
two-tailed) nor any correlation between task performance 
and first PC score across participants (ρ(53) = −0.12, P =  
0.40, Spearman’s correlation). Moreover, the group differ
ence in the stimulus-evoked (DMN deactivation) first PC 
score remained after controlling for D2/3 antagonist (anti
psychotic) medication exposure, using a similar multiple re
gression approach as in the replay-evoked analysis (βdiagnosis  

= −0.23 ± 0.091, t = −2.56, P = 0.013, βCPZ_dose = 0.001 ±  
0.001, t = 1.08, P = 0.29). Of note, a similar group differ
ence in stimulus-evoked DMN deactivation is found when 
using an alternative measure to that derived from PCA (control  
= 0.030 ± 0.005, patient = 0.012 ± 0.005, z(53) = 2.72, P =  
0.007, two-sample Wilcoxon rank sum test for equal medians, 
two-tailed, here defining DMN deactivation as the difference 
between mean DMN activation measured in pre-stimulus 
(−500 to 0 ms) and post-stimulus (0–500 ms) epochs).

Relationship between replay-evoked 
and stimulus-evoked RSN dynamics
An observation that patients exhibit attenuated DMN 
modulation, both with respect to external stimuli (online) 
and spontaneous replay events (offline), provides a unique 
opportunity to investigate the relationship between these 
two facets of evoked DMN dynamics. Consequently, we ex
amined the correlation between each participant’s 
stimulus-evoked first PC score (mean over trials for each par
ticipant) and replay-evoked first PC score (defined as 
Δβinferred[PC], the increase in replay-DMN coupling for in
ferred transitions, from pre- to post-learning rest). This re
vealed a positive relationship across all participants (r(52)  
= 0.39, P = 0.004, Pearson’s correlation, Fig. 5), which re
mained significant when controlling for a difference in 
Δβinferred[PC] between groups (multiple regression of 
replay-evoked Δβinferred[PC] effect onto stimulus-evoked first 
PC score, group membership and the interaction of these 
variables: βstim-evoked = 0.097 ± 0.037, t(50) = 2.58, P =  
0.013, βgroup = 0.052 ± 0.021, t(50) = 2.48, P = 0.016, 
βstim-evoked∗group = 0.051 ± 0.075, t(50) = 0.68, P = 0.50, 
with equivalent statistical results when switching the assign
ment of dependent and independent MEG variables in re
gression). The non-significant interaction term in this 
regression suggests a linear relationship between online 
and offline RSN modulation reflects a fundamental aspect 
of brain functional network organization that is preserved 
in schizophrenia. The relationship between stimulus-evoked 
and replay-evoked DMN dynamics was also present when 
using direct measures of DMN activation that do not make 
use of PCA (ρ(52) = 0.42, P = 0.002, Spearman’s correl
ation, with replay-evoked DMN activation defined as the 
mean Δβinferred[DMN] effect from −100 to +100 ms with re
spect to replay onset, and stimulus-evoked DMN 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad056#supplementary-data
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deactivation defined as the reduction in mean DMN activa
tion from pre-stimulus to post-stimulus 500-ms epochs).

Relationship to behaviour
Having found group differences in replay evoked DMN modu
lation, we next asked whether subject-level neural effects pre
dict maintenance of structural knowledge, which we 
examined in a position probe quiz at the end of the scanning ses
sion (Fig. 1 and ‘Materials and Methods’ section). Patients per
formed numerically (although not significantly) worse on this 
behavioural measure compared to controls (controls =  
96.6% ± 0.75, patients = 93.7% ± 1.72, z(52) = 1.23, P =  
0.22, Wilcoxon rank sum test for equal medians, two-tailed). 
Across all participants, performance positively related to the de
gree to which DMN activation is specifically coupled to replay 
of inferred transitions during the post-learning rest period 
(βinferred[PC], ρ(52) = 0.31, P = 0.02, Spearman’s correlation), 
and this remained significant after controlling for a group dif
ference in mean performance (multiple regression of perform
ance onto βinferred[PC], group and their interaction, using 
ranked variables: βreplay-evoked = 0.31 ± 0.14, t(50) = 2.24, P =  
0.03, βgroup = 2.71 ± 4.29, t(50) = 0.63, P = 0.53, 
βreplay-evoked∗group = 0.22 ± 0.28, t(50) = 0.79, P = 0.43). Of 
note, there was no relationship between replay-DMN coupling 

for inferred transitions (βinferred[PC]) and speed of knowledge ac
quisition itself (‘learning lag’, ρ(52) = −0.09, P = 0.52, 
Spearman’s correlation), a behavioural measure we previously 
showed was related to replay strength.47

Next, we investigated the relationship between stimulus- 
evoked RSN responses and task performance during stimulus 
localizer itself (Fig. 1 and ‘Materials and Methods’ section). 
We found greater expression of a stimulus-evoked ‘DMN de
activation’ profile predicted faster response reaction time 
(RT) in the stimulus localizer task at the single trial level, 
with no group difference in this MEG–behaviour relationship 
(results from a single multiple regression concatenating all cor
rectly answered trials across participants, and regressing trial 
RT onto a design matrix comprising stimulus-evoked first 
PC score (main effect), a group × PC score interaction term, 
and nuisance regressors controlling for participant-specific 
mean RT for congruent and incongruent trials separately: 
βPC_score = −1.95 ± 0.61, t(19 838) = −3.19, P = 0.001. 
βgroup×PC_score = −0.63 ± 1.22, t(19 838) = −0.51, P = 0.61.

Relationship to symptoms
Finally, we found no relationship between the expression of 
positive psychotic symptoms or depressive symptoms and ei
ther replay-evoked DMN modulation or stimulus-evoked 

A B

Figure 5 Relationship between replay-evoked and stimulus-evoked RSN dynamics. (A) We extracted the principal mode of variation 
governing evoked RSN dynamics for both offline (replay-evoked, top) and online (stimulus-evoked, bottom) conditions using PCA (see ‘Materials and 
Methods’ section). The stimulus-evoked response is defined as the mean of the first PC score over all trials of stimulus localizer, while for 
replay-evoked response, we quantify the degree to which the first PC score is expressed specifically for inferred transitions, and increases from pre- to 
post-learning (i.e. Δβinferred[PC]). PC coefficients duplicated from Figs 3F and 4B. Illustrations on left: top is an illustration of an exemplary spontaneous 
replay event in the [time, state] decoding matrix of a single control participant. Bottom is a depiction of the stimulus localizer trial structure [a blank 
screen inter-trial interval (ITI) precedes each picture onset, not shown]. (B) Positive linear correlation between stimulus-evoked RSN-modulation and 
replay-evoked RSN modulation (Δβinferred[PC], increase from pre- to post-learning specific for inferred transitions). Variable definition is the 
participant-specific first PC scores, as in (A). Although the mean effect of both measures is lower in patients compared to controls (see Figs 3 and 4), 
the linear relationship between variables is preserved across participants after accounting for these group differences in mean effects (see main text). 
Error bars represent 95% confidence intervals of line of best fit. Sample: n = 27 patients and n = 27 controls.
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DMN modulation in our patient sample. Negative symp
toms showed significant associations with post-learning 
replay-evoked DMN modulation (βinferred[PC]) and 
stimulus-evoked DMN modulation, but these did not survive 
a correction for multiple statistical comparisons 
(Supplementary Table 2). Neural effects were not different 
between patients taking and not taking D2/3R antagonist 
medication (Supplementary Table 2).

Discussion
DMN function has been construed in terms of internally di
rected and self-referential thought.9,54-58 However, more re
cent proposals suggest a role in abstract cognitive functions 
that involve domain-general representations of the world 
(i.e. internal models or schemas),43-46 a function of immedi
ate relevance for understanding myriad psychiatric symp
toms such as delusions. These representations (cognitive 
maps) are supported by circuits that sit at the apex of a cor
tical processing hierarchy (including hippocampus), one sug
gested as enabling relational inferences that ‘go beyond’ 
direct experience.44,59 Offline hippocampal replay is intim
ately connected to these functions. Replay trajectories are 
thought to reflect a sampling from internal relational mod
els30,39,40 that in turn support model extension and consoli
dation.34,35,60-63 One hypothesis is that a coupling between 
DMN activation and hippocampal replay41 (and associated 
ripple oscillations42) during rest could provide a temporal 
processing window that enables modification of, and sam
pling from, internal models, in a manner that helps prevent 
interference from online cognition.41

In control participants, replay-DMN coupling during rest 
was specifically boosted for replay events containing 
task-relevant (inferred) relationships (βinferred), from before 
to after learning. This is in line with reports that the content 
of offline reactivations is biased towards behaviourally salient 
(and recently learned) information, serving to prioritize mem
ory consolidation and assimilation of new information into 
existing knowledge structures.64-68 Consistent with this hy
pothesis, we find that the strength of replay-DMN coupling 
after learning (and specific for inferred transitions) predicts 
subsequent explicit knowledge of abstracted features of the 
learned task structure (i.e. ordinal position of task pictures).

In patients, there was no similar increase in task-relevant 
replay-DMN coupling, and indeed this effect was negative. 
It is important to note that βinferred reflects the predictive in
fluence of task-relevant replay on DMN activation (i.e. re
play events containing task pairs that are adjacent in a 
learned sequence), controlling for the mean coupling effect 
over all replay events (βnon-specific). Thus, a drop in βinferred 

from before to after learning does not reflect a reduced over
all effect of replay-DMN coupling per se (captured by 
βnon-specific, which is equivalent between groups) but rather 
a reduction in the specificity of this effect for task-relevant re
play transitions. Given the proposed role of replay, we specu
late that a reduction in this specificity might have deleterious 

effects on stabilization of task representations and memory. 
Our prior hypothesis was that such abnormalities in 
replay-DMN coupling might relate to symptoms such as hal
lucinations (given a proposed role of replay-DMN coupling 
in minimizing the interference between memory reactiva
tions and goal-oriented cognition41) and maladaptive (delu
sional) beliefs (given a proposed role in belief updating). 
However, we find no relationship between positive psychotic 
symptoms and replay-DMN coupling. This might reflect a 
temporal fluctuation and context dependency of many core 
symptoms.

Most previous resting state studies of DMN in schizophre
nia have availed of fMRI, and differ substantially from the 
HMM approach we use, both in operationalization of 
DMN activity (commonly defining this as the magnitude of 
blood oxygenation-level–dependent signal within voxels of 
a DMN mask) and the degree to which DMN dynamics 
are temporally resolved (many studies averaging DMN acti
vation or connectivity over all samples within a rest session). 
This literature has yielded a wide array of (often equivocal) 
findings pertaining to group differences in functional con
nectivity between nodes of the DMN,17,26,69 functional con
nectivity between nodes of DMN and ‘task positive’ 
networks13,17,26,70,71 and graph-theoretic properties of 
whole-brain functional networks.72 Attenuated task-related 
DMN deactivation is among the most well-replicated fMRI 
findings in the condition.19-27 Nevertheless, a cohesive syn
thesis of this literature has remained elusive, owing in part 
to considerable methodological heterogeneity.29,73

By contrast to an established fMRI approach, the HMM 
approach to MEG resting state analysis operationalizes 
each RSN as a spectrally resolved pattern of power covaria
tions and coherence distributed over brain regions, which is 
held fixed across all participants. This allows for an inference 
of individual participant RSN activation dynamics with 
millisecond resolution.4,52 Emerging evidence indicates that 
such information may uncover hitherto undetected differ
ences in RSN dynamics in clinical samples,74 although to 
the best of our knowledge, the approach has not previously 
been applied to MEG or electroencephalography (EEG) 
data in schizophrenia. Previous studies have established 
that an HMM approach, as applied to MEG resting state 
data, identifies RSN patterns corresponding to those de
tected using fMRI.2,4,41,75 Our ascription of RSN2 as 
DMN, owing to high power in medial prefrontal regions 
and high coherence in parietal regions, is in line with these 
previous reports. Additional support for the interpretation 
of RSN2 as DMN comes from the strong association be
tween this network and replay events (see Supplementary 
Fig. 3 and Higgins et al.41) (previously detected using 
fMRI42), as well as our finding of stimulus-evoked RSN2 de
activation during stimulus localizer, a deactivation that is at
tenuated in patients in a manner predicted by previous fMRI 
studies19-27 (Fig. 4).

With any case-control design, consideration needs to be 
given to whether neural differences might arise secondary 
to more general (non-specific) group differences in neural 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad056#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad056#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad056#supplementary-data
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcad056#supplementary-data
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dynamics or cognition. Our demonstration of a group differ
ence in replay-DMN coupling is not explained by differential 
expression of replay per se (as demonstrated empirically in 
the present paper) nor in a differential ability to detect task 
state reactivations (demonstrated in matched task decoder 
generalization accuracy between groups47). Likewise, the 
observed group difference is unlikely to be attributed to dif
ferences in the HMM fitting procedure between groups (in
cluding a differential concordance between the RSN state 
observation models and individual participant RSN features) 
as patients and controls had similar RSN spectral character
istics in the frequency range used for model fitting (1–45 Hz), 
exhibited similar dynamical properties of inferred RSN state 
time courses and similar baseline (non-specific) 
replay-evoked RSN activation profiles. Moreover, group dif
ferences in stimulus-evoked RSN profiles are unlikely to be 
driven by differential task engagement, given matched stimu
lus localizer task performance. Finally, we find no evidence 
that our neural effects are explained by antipsychotic expos
ure, although a strict test of this hypothesis requires a rando
mized placebo-controlled experimental design.

Conclusions
We show schizophrenia is associated with a reduced resting 
state coupling between DMN activation and replay events. 
This coupling is specific for inferred task relationships and 
predicts subsequent memory maintenance for such relation
ships. The finding sheds light on previously reported resting 
state DMN abnormalities in schizophrenia and and raises 
further hypotheses that these might reflect neural processes 
relevant to memory consolidation and inference. 
Furthermore, replay-DMN coupling is positively related to 
stimulus-evoked DMN suppression, providing a point of 
contact to an established fMRI literature pertaining to 
task-related DMN modulation in schizophrenia Our find
ings thus provide a pointer towards how the computational 
function of offline RSN dynamics may be relevant for under
standing the complex phenomenology of schizophrenia, 
opening up new avenues of investigation of resting state 
brain activity in psychiatry.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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