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Abstract

Statistical Parametric Mapping (SPM) is the dominant paradigm for mass-univariate analysis of neuroimaging data. More
recently, a Bayesian approach termed Posterior Probability Mapping (PPM) has been proposed as an alternative. PPM offers
two advantages: (i) inferences can be made about effect size thus lending a precise physiological meaning to activated
regions, (ii) regions can be declared inactive. This latter facility is most parsimoniously provided by PPMs based on Bayesian
model comparisons. To date these comparisons have been implemented by an Independent Model Optimization (IMO)
procedure which separately fits null and alternative models. This paper proposes a more computationally efficient
procedure based on Savage-Dickey approximations to the Bayes factor, and Taylor-series approximations to the voxel-wise
posterior covariance matrices. Simulations show the accuracy of this Savage-Dickey-Taylor (SDT) method to be comparable
to that of IMO. Results on fMRI data show excellent agreement between SDT and IMO for second-level models, and
reasonable agreement for first-level models. This Savage-Dickey test is a Bayesian analogue of the classical SPM-F and allows
users to implement model comparison in a truly interactive manner.
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Introduction

Bayesian inference has been applied to the analysis of fMRI

data in multiple domains, ranging from connectivity analysis [1–

4], group analysis [5,6], haemodynamic modelling [7], spatial

modelling [8], and state-space approaches [9,10]. Generically, the

advantage of these Bayesian approaches is that they allow for

seamless incorporation of prior knowledge and employ established

procedures for parameter regularization and model selection.

Bayesian methods have also been widely used in the MEG/EEG

domain for tackling the problems of source reconstruction [11,12]

and biologically informed connectivity analysis [13,14]. The

development and application of Bayesian methods to neuroimag-

ing is described in recent reviews [15,16]. The focus of this paper is

a Bayesian method for the mass-univariate analysis of neuroim-

aging data, known as Posterior Probability Mapping (PPMs).

Previously, PPMs have been proposed as a Bayesian alternative to

Statistical Parametric Maps (SPMs) [17,18]. PPMs can be applied

to several common neuroimaging modalities (fMRI, PET, MEG,

EEG) and provide estimates of effect size that are informed by

empirical priors.

PPMs address a key limitation of classical frequentist inference:

while a small p-value allows rejection of the null hypothesis, a large

p-value does not permit its acceptance. Informally, absence of

evidence is not evidence of absence. Bayesian model comparison,

on the other hand, can find either the null or alternative

hypothesis more probable [19,20]. This enables imaging neuro-

scientists to infer that regions have not activated and so allows

detection of double dissociations among brain regions and

cognitive processes. To date, this model comparison procedure

has been implemented by estimating multiple models and

computing the evidence for each, which is prohibitively time-

consuming for investigating multiple hypotheses. This paper

introduces a more computationally efficient method based on

the Savage-Dickey ratio [21,22]. Before describing the method we

review relevant concepts in Bayesian neuroimaging. Readers

requiring a more comprehensive background to Bayesian infer-

ence are referred to standard texts [23,24].

PPMs for Parameter Inference
PPMs are similar to SPMs in that they are also based on a mass

univariate approach in which General Linear Models (GLMs) are

fitted to data at each voxel [25]. They differ however in the

statistical method used to estimate parameters and make

inferences. Estimates of the GLM parameters, for example, are

constrained using empirical priors.

Early work on Bayesian fMRI considered mass-univariate

approaches to modeling spatial dependencies in the signal and

noise. For example, Gossl et al. [8] proposed a separable spatio-

temporal model where these spatial dependencies were charac-

terized using Markov Random Field (MRF) priors. More recently,

Woolrich et al. [18] described a Bayesian model of fMRI in which

the noise process was characterized by separable or nonseparable

spatio-temporal models. Both of these approaches used Markov

Chain Monte Carlo (MCMC) to perform posterior inference,

which is computationally expensive.
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We have previously proposed a non-spatial PPM procedure

employing global shrinkage priors which shrink parameter

estimates toward zero [17]. We have additionally developed a

PPM approach specifically for within-subject fMRI time series

[26]. This allows users to specify either global shrinkage priors, or

spatial priors based on Gauss-Markov Random Fields (GMRFs)

which constrain effect sizes to be similar at nearby voxels. These

models are particularly suited to within-subject fMRI, as the error

correlations can be modelled using arbitrary-order voxel-specific

autoregressive (AR) models. These AR models accurately describe

the physiological noise processes in fMRI data [27]. Later work

allows for spatial priors on the AR parameters [20] and the

approach has been extended to incorporate spatial priors based on

wavelets [28] and Gaussian processes [29].

For the above approaches, the result of the estimation is a

posterior distribution of effect size at each voxel, p(ci Dy), where

ci~cT wi is a linear combination or ‘contrast’ of the GLM

parameters at the ith voxel, wi. These voxel-wise posterior

distributions or PPMs are visualised by specifying two thresholds

– an effect size threshold, cT , and a posterior probability threshold

pT – and plotting voxels for which p(ciwcT Dy)wpT . Depending

on the software, what is actually plotted can be the posterior

probability or the effect size itself. One may also have the option of

plotting the log posterior odds, log p=(1{p), which improves the

visualisation for voxels that have posterior probabilities close to

unity.

Inferences based on PPMs thus allow researchers to be more

specific as to the effects in which they are interested. For example,

effect sizes less than 0.1% of the global mean may be deemed

physiologically irrelevant (see also a related though less principled

method to avoid declaring voxels with trivial effect sizes significant

(in a frequentist sense) due to artefactually low variance [30]). An

alternative perspective is that needing to specify an additional

arbitrary threshold (the effect-size threshold) may be seen as a

disadvantage of the method. This has motivated the development

of PPMs for model inference.

PPMs for Model Inference
We first distinguish between nested and non-nested model

inference. In nested model inference, a ‘nested’ model can be

formulated as a special case of a more general ‘full’ model. For

example, nested models may be constructed by removing one or

more explanatory variables from the full model. When models are

not related in this way they are said to be non-nested. This will be

the case if each model has its own unique set or subset of

explanatory variables that are not found in the other model.

For non-nested model inference we can proceed by separately

fitting the models of interest, computing the model evidence for

each, and then plotting a map of the posterior model probability

or log Bayes factor. This procedure, which we refer to as

Independent Model Optimization (IMO), is straightforward

because the evidence of a GLM can be computed exactly

[31,32]. This is not the case for nonlinear models, such as the

Dynamic Causal Models used in the study of brain connectivity

[1].

This model inference approach has been applied in the context

of within-subject models of fMRI time series [20], and allows one

to compute a model evidence map; a map of (log) model evidence

as a function of space. If one computes a model evidence map for

each model of interest, and for each subject in a group, then one

can make an inference at the population level as to which model is

the most prevalent [33]. The method can accomodate any number

of models (not just a null model and a single alternative). This

approach has been used, for example, to show that in a forced-

choice decision task, anterior brain regions integrate contextual

information over longer time periods than do posterior regions

[34].

To show that a brain region does not activate requires a strong

Bayes factor in favour of the null model over the alternative model

for the data in that region. This inference requires the specification

of a single parameter, namely what is meant by ‘strong’. Here we

can refer to established scales of strengths of evidence [22,35]

where, for example, a Bayes factor of at least 20 (or log Bayes

factor of at least 3) corresponds to strong evidence. It is also

possible to declare that a region does not activate using PPMs for

parameter inference, but this requires specification of an

additional parameter - the effect size threshold [17]. The model

comparison approach is therefore more parsimonious.

Whilst PPMs based on model inference are a powerful

paradigm for the analysis of fMRI time series, they are somewhat

computationally demanding, because for every model comparison

one wishes to make, it is necessary to fit all models over the spatial

domain of interest, and compute the evidence for each. If one has

a small region of interest this is less of an issue, but whole-brain

analyses can require tens of minutes of fitting time for each model

to be considered.

We now describe the special case of nested model comparison.

Previously, we have proposed an analogue of the classical F-test,

which instead uses a x2 test based on the posterior density [36].

The resulting test is conceptually rather unsatisfactory, however, as

it implements a classical inference based on a Bayesian posterior

density. This paper proposes replacing the x2 test with an

inference based on the Savage-Dickey ratio. As we shall see, this

new approach will also provide a computationally efficient method

for non-nested model comparison. This extends recent work in

brain connectivity analysis where we have proposed [37] and

validated [38] a generalisation of the Savage-Dickey approach in

the context of Dynamic Causal Modelling [39].

Methods

This section first describes Bayesian model and parameter

inference for the GLM. We then describe the statistical tests for

nested and non-nested model comparison including the Savage-

Dickey ratio. In our implementation of Posterior Probability

Mapping (PPM) we do not store posterior covariance matrices as

this would require a prohibitive amount of computer disk space.

Instead, we store a small number of hyperparameters to

reconstruct the covariance matrices using a Taylor series

approximation. This additional step is described in a later

subsection. We also show how PPMs can be derived for both

first- and second-level models. In what follows N(x; m,S) denotes a

multivariate Gaussian distribution with mean vector m and

covariance matrix S, of which DSD is the determinant.

Bayesian General Linear Model
We consider Bayesian inference for GLMs with data y, design

matrix X and regression coefficients w. We assume a Gaussian

prior over regression coefficients

p(wDm)~N(w; wm,Sm) ð1Þ

where wm and Sm are the prior mean and covariance for model m.

In most applications to fMRI [17,26] the prior mean is set to zero,

and the prior covariance is estimated using multiple time series

over a spatial region. This is described in more detail below in the

section on Empirical Bayes. The variable m symbolises the model

assumptions. Different models are usually thought of as being

Posterior Probability Mapping Using Savage-Dickey
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specified by having different design matrices. In GLMs a single

parameter is associated with each column of the design matrix,

therefore different models have different parameters. It is also

possible to conceive of different models as having different priors,

hence the notation above. For example, subspaces of the design

matrix can be eliminated by setting the corresponding parameters

to have zero prior mean and zero prior variance.

We also assume a Gaussian likelihood

p(yDw,m)~N(y; Xw,Sy) ð2Þ

where Sy is the observation noise covariance matrix. Like the prior

covariance, the noise covariance is typically estimated from the

data, as described in the section on Empirical Bayes. Given a

Gaussian prior and likelihood, the posterior over regression

coefficients is also Gaussian [40]

p(wDy,m)~N(w; wN ,SN ) ð3Þ

with posterior mean wN and posterior covariance SN given by

S{1
N ~X TS{1

y XzS{1
m ð4Þ

wN~SN X TS{1
y yzS{1

m wm

� �
Bayesian inference over models is implemented by first

computing the model evidence p(yDm). If one has a prior

distribution over a set of models, M, this can be updated into a

posterior distribution using Bayes rule and the model evidence

p(mDy)~
p(yDm)p(m)P

m’[M p(yDm’)p(m’)
ð5Þ

For pairs of models with equal model priors, p(m1)~p(m2),
inference can be made based on the Bayes factor [22]. The Bayes

factor for model m1 versus m2 is given by

BF12~
p(yDm1)

p(yDm2)
ð6Þ

log BF12~ log p(yDm1){ log p(yDm2)

For GLMs, assuming known Sm and Sy, the log model

evidence, log p(yDm), can be computed as

Lm~{
1

2
eT

y S
{1
y ey{

1

2
log DSyD{

N

2
log 2p ð7Þ

{
1

2
eT

wS
{1
m ew{

1

2
log DSmDz

1

2
log DSN D

where the ‘prediction errors’ are

ey~y{XwN

ew~wN{wm

ð8Þ

Unequal model priors are accomodated by making inferences

using posterior odds ratios, instead of Bayes factors. The posterior

odds is equal to the prior odds times the Bayes factor

p(m1Dy)

p(m2Dy)
~

p(yDm1)

p(yDm2)

p(m1)

p(m2)
ð9Þ

Taking logs gives

log
p(m1Dy)

p(m2Dy)
~ log BF12z log

p(m1)

p(m2)
ð10Þ

Thus if m1 is 100 times less likely a priori than m2, the log

posterior odds equals the log Bayes factor minus log 0:01~{4:6.

Hence, unequal prior odds can be dealt with by a simple change to

the decision threshold.

Empirical Bayes
We first discuss the approach to second-level fMRI analysis

which is described in [17]. This takes an Empirical Bayes

approach which estimates parameters of the prior p(w) using data

from all voxels in the search region. The prior mean is set to zero,

wm~0, and the prior covariance is assumed diagonal

Sm~diag(a{1
m ) with the kth element of am denoting the prior

precision of the kth parameter. The observation noise covariance

matrix at the ith voxel, is then parameterised as

Sy(i)~liV ð11Þ

where li is a single voxel specific hyperparameter and V is a

matrix which captures the global observation noise structure and

has been estimated in a previous step. The hyperparameters li and

am are then set to maximise the model evidence using an

Empirical Bayes approach [17]. This optimisation does not

require the model evidence itself to be computed.

For first-level models the approach is similar. The main

difference is that Sy is set to accommodate voxel-wise Auto-

Regressive (AR) noise processes of arbitrary order, so as to absorb

aliased temporal fluctuations due for example to respiration and

heartbeat. Here, Sy is parameterised using voxel-specific AR

parameters. It is possible to set the AR model order to zero, in

which case the likelihood reduces to that for the standard GLM.

For the first-level models the priors can be either set as ‘global

shrinkage priors’, which are identical to the second-level priors

described above, or as spatial priors which encourage parameter

estimates to be similar at nearby voxels [26]. All the hyperpara-

meters are estimated together, along with the prior precisions

using Empirical Bayes [26]. This paper is primarily concerned

with evaluation of the Savage-Dickey approach for global

shrinkage priors.

For the above Empirical Bayes approaches, the expression for

the log model evidence in equation 7 should be augmented with

penalty terms to accomodate the uncertainty in the estimation of

the associated hyperparameters. These terms are provided, for

example, in equations 8 and 13 in [20]. For the results in this

paper the inclusion of these extra terms made little or no

quantitative difference so, for ease of communication, the IMO

results presented in this paper are based on equation 7.

Posterior Probability Mapping Using Savage-Dickey
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Nested Model Comparison
This section describes the Savage-Dickey approach for nested

model comparison. If model m1 is nested within m2 where the

models have common parameters w1 and m2 has additional

parameters w2, then the Bayes factor can be rewritten as follows.

First, we write the evidence for model 2 given that w2~0

p(yDw2~0,m2)~

ð
p(yDw2~0,w1,m2)p(w1Dm2)dw1 ð12Þ

Because we have a nested model the likelihood term

p(yDw2~0,w1,m2)~p(yDw1,m1). This is the mathematical defini-

tion of a nested model. Second, if it is the case that the priors over

the common parameters are the same for the two models,

p(w1Dm2)~p(w1Dm1), then we can write

p(yDw2~0,m2)~

ð
p(yDw1,m1)p(w1Dm1)dw1~p(yDm1) ð13Þ

Substituting into the Bayes factor (equation 6) gives

BF12~
p(yDw2~0,m2)

p(yDm2)
ð14Þ

Using Bayes rule over the posterior of m2 gives

p(w2~0Dy,m2)~
p(yDw2~0,m2)p(w2~0Dm2)

p(yDm2)
ð15Þ

We can therefore see that

BF12~
p(w2~0Dy,m2)

p(w2~0Dm2)
ð16Þ

The formula makes intuitive sense and is known as the Savage-

Dickey ratio [21]. If we believe it is more likely that parameters are

zero after seeing the data than before, then BF12w1 and we have

evidence in favour of the nested model. Figure 1 illustrates the

opposite case for a simple one-dimensional example. For nested

model comparisons the Bayes factor can therefore be computed by

fitting just the larger model. If the priors over the common

parameters are not the same for two models then a correction

factor, based on a sampling approach, can be computed [41].

The above procedure can be generalised to consider non-zero

hypothesized values, and nested models defined as subspaces of full

models. This is implemented using the usual approach of defining

contrasts for linear models [42]. A single contrast vector, for

example, can be used to specify a single hypothesis, whereas

multiple contrast vectors combined into a matrix can be used to

specify a compound hypothesis. For example, if CT~½1,{1� then

CT w~0 specifies the single hypothesis that w1~w2. Similarly, if

CT~½1,{1,0; 0,1,{1� then CT w~0 specifies the compound

hypothesis that w1~w2 and w2~w3. This latter compound

hypothesis is rejected if w1=w2 or w2=w3. This type of contrast

matrix is used, for example, in testing for main effects in factorial

designs. More details on hypothesis testing in linear models can be

found in standard textbooks [42].

We now consider the use of contrasts for the case of Gaussian

priors and posteriors. The Savage-Dickey approximation to the

Bayes factor in favour of the alternative hypothesis (full model)

over a particular null hypothesis (nested model i) is given by

BFf ,i~
p(CT

i w~0Dm)

p(CT
i w~0Dy,m)

ð17Þ

where Ci is a contrast matrix and w are the regression coefficients.

The Savage-Dickey ratio compares the probability density for the

null hypothesis under the prior versus under the posterior. If it is a-

posteriori less likely then BFf ,i will be large, favouring the full

model (as shown in Figure 1).

Given that the prior and posterior are both Gaussians this can

be evaluated as

BFf ,i~
N(0; mo,S0)

N(0; mN ,SN )
ð18Þ

where

m0~CT
i wm

mN~CT
i wN

S0~CT
i SmCi

SN~CT
i SNCi

ð19Þ

If the prior mean is wm~0 (as it is for Bayesian GLMs

implemented in SPM [43]) the log Bayes factor simplifies to

log BFf ,i~
1

2
mT

NS{1
N mNz

1

2
log

DSN D
DS0D

ð20Þ

The Savage-Dickey ratio is exact if wm, Sm and Sy are identical

for the two models being computed. Under these conditions it will

give identical results to IMO. Most practical implementations of

Bayesian inference for fMRI, however, set wm~0 and use an

Empirical Bayes procedure to estimate Sm and Sy. These

parameters will therefore differ between models.

Figure 1. The figure shows the prior density p(w2Dm2) in blue
and the posterior density p(w2Dm2,y) in red. Here BF12~0:5,
weakly favouring the more complex model m2 , since the parameter w2

is half as likely to be zero after seeing the data than before.
doi:10.1371/journal.pone.0059655.g001
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Consider, for example, the estimation of Sy when comparing a

simple and complex model. If the simpler model is true then the

error variances are likely to be very similar, whereas if the complex

model is true then the error variances for the complex model are

likely to be smaller. A redeeming feature of error variance

estimation, however, is that these estimates are corrected for the

degrees of freedom in the model. The effect of Empirical Bayes

estimates is addressed empirically at the beginning of the results

section.

Non-nested Model Comparison
The previous section has shown how to compute log BFf ,i

which is the log Bayes factor of the full model with respect to the

reduced model defined by contrast Ci. We can also consider a

second contrast Cj and its associated term log BFf ,j . Note that the

contrasts Ci and Cj can define two separate subspaces of the full

model, for example, by loading onto different sets of regressors in

the design matrix. This means that model i need not be nested

within model j or vice-versa. The only requirement is that both are

nested within the full model f .

One can then combine the two log Bayes factors to get log BFi,j

thus providing a procedure for the comparison of non-nested

models. We have

BFij~
p(yDmi)

p(yDmj)
~

p(yDmi)

p(yDmf )

p(yDmf )

p(yDmj)
ð21Þ

Hence

log BFij~ log BFfj{ log BFfi ð22Þ

This idea has been proposed in the Bayesian model selection

literature [22] and has been employed [37] and validated [38] in

the context of Dynamic Causal Models.

Group Analysis
The implementation of non-nested model comparisons is based

on the log Bayes factor images created as previously described.

One can then compute differences in these, as indicated in

equation 22, and enter these difference images into a group

analysis. For nested model comparisons the log Bayes factor

images, computed using equation 20, can also enter a group

analysis in the same way.

To make model inferences regarding the population from which

subjects were drawn one can use the same random-effects (RFX)

model selection procedure as described previously [33]. Here the

‘random-effect’ is a discrete variable which indexes which model

each subject uses. This presents an alternative to the standard

group analysis which implements a random effects analysis over

the parameters of a model. This RFX parameter inference

procedure is described in standard references [25] and makes use

of ‘second-level’ models.

RFX parameter inference looks for group effect sizes which are

consistent in relation to the between-subject variability whereas

RFX model comparison looks for the models which have the

highest frequency in the population. If some subjects show strong

negative and others strong positive effects then this could be

detected with RFX model comparison but not with RFX

parameter inference. Conversely, if there is a consistently signed

but small effect RFX parameter inference may be more sensitive.

Taylor Series Approximation
In our implementation of the above Bayesian estimation

algorithms, the full voxel-wise posterior covariance matrices are

not explicitly stored as this would require a prohibitive amount of

disk space. For GLMs with k parameters each covariance matrix

comprises k(kz1)=2 real numbers. For brain images comprising v
voxels this gives a total of S~vk(kz1)=2 real numbers to store.

For example, for k~20 and v~50,000 we have S~1:05|106 or

210 images. Instead we store a small number of parameters that

allow us to reconstruct these covariance matrices using a first-

order Taylor series approximation. For example, in the ‘second-

level’ PPM approach [17] the posterior covariance (4) at voxel i
depends on li via the noise covariance (11),

S{1
N (li)~X TS{1

y XzS{1
m ~X T (liV ){1XzS{1

m ð23Þ

where li is a single voxel specific hyperparameter and V is a

matrix which captures the observation noise structure and has

been estimated in a previous step [17]. These hyperparameters li

are the same quantities referred to in the above section on

Empirical Bayes. Viewed as a function of a continuous parameter

l, SN (l) can be analytically differentiated, allowing the posterior

covariance to be approximated using a first-order Taylor series

SN (li)~SN (�ll)z
dSN

dl
Dl~�ll(li{�ll) ð24Þ

where �ll is the mean hyperparameter averaged over the volume of

interest. Thus we need only store a single voxel specific

hyperparameter, li, �ll and the single Jacobian matrix
dSN

dl

evaluated at �ll. Thus for v voxels the total storage required is

S~vzk(kz1)=2z1. This breaks down as v for the li,

k(kz1)=2 for the Jacobian and one for �ll. For our numerical

example this gives S~5:02|104 or between 1 and 2 images. This

requires less storage by a factor of over 200.

A similar Taylor series approach is used for first-level models

[44]. The fact that we will not be using the exact posterior

distributions to compute the Savage-Dickey ratios in equation 20

will create an extra level of approximation in the computation of

log Bayes factors. We therefore refer to the overall approach as the

Savage-Dickey-Taylor (SDT) method.

Summary
We have described the use of Savage-Dickey ratios initially for

the case of nested model comparisons. This brings about a natural

symmetry with classical inference based on SPMs. For SPMs there

are two types of test. The SPM-t allows one to test for one-sided

effects. The Bayesian analogue of the SPM-t is the PPM for

parameter inference. The SPM-F allows one to test for two-sided

effects for both uni-dimensional or multi-dimensional contrasts

(the contrast matrix Ci has a single row, or multiple rows). The

Bayesian analagoue of this is the Savage-Dickey test for a nested

model comparison.

We have also shown how the Savage-Dickey approach can be

used for non-nested model comparison. Importantly, whether the

comparison is nested or non-nested the computational saving is

great, because we only need to estimate a single full model. To

save storage space, practical implementations of these Bayesian

algorithms reconstruct posterior parameter covariance matrices

using a Taylor series approach. We therefore describe our overall

approach as the Savage-Dickey-Taylor (SDT) method. In what

follows we compare the proposed SDT method for model

Posterior Probability Mapping Using Savage-Dickey
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inference with the previously proposed Independent Model

Optimization (IMO) approach, which requires separate fitting of

full and nested models.

fMRI Data
We present first- and second-level analyses of data from an

fMRI study of face processing. The data were collected to study

neuronal responses to images of faces and are available from the

SPM web site [43]. For a full description of this data set and

similar analyses see [45]. Each face was presented twice and faces

belonged to either familiar (‘F’) or unfamiliar (‘N’) people which

gave rise to four conditions (‘N1’, ‘N2’, ‘F1’, ‘F2’). For the first-

level analyses hemodynamic responses were modelled with a single

‘canonical’ hemodynamic basis function [43]. Together with a

constant column, this gives rise to a design matrix containing five

columns which we refer to below as the ‘standard’ first-level

model. We use this standard model to analyse data from a single

subject.

The second-level analysis (RFX parameter inference) proceeds

as follows. Data from 12 subjects were first analysed using 12

separate first-level models. These were not the standard model, as

above, but treated all face presentations as a single event type.

Responses were then modelled using a 12 time bin Finite Impulse

Response (FIR) model as described in the Group analysis section

of the SPM manual. Each time bin was 2 s wide thus covering a

24 s post-stimulus epoch. First-level contrasts were then used to

produce summary statistic images for each time bin and for each

subject. This resulted in 144 images which were used as data for

the second-level models described in the results section below.

Results

We first investigated the accuracy of the Savage-Dickey (SD)

approximation using simulation studies to assess the effect of

empirical estimation of observation noise and prior precision. We

also assess the effect of the Taylor approximation. We then report

the accuracy of SDT versus IMO on empirical first- and second-

level fMRI data.

Observation Noise
As noted in the theory section, SD is exact if the likelihoods, and

therefore the obervation noise parameters, are the same between

models. However, in practice the observation noise parameters are

estimated from the data. Our simulations examined the effect of

this estimation on the accuracy of the approximation.

We defined a ‘reduced model’ corresponding to the standard

first-level model design described above. This has four regressors

of interest, one for each of the four experimental conditions and an

uninteresting constant column. We then defined a ‘full model’

which had these regressors, but in addition had two columns for

parametric modulators. These modulators modelled responses as

exponential functions of the lag between first and second

presentations of face image i, in terms of the number of

intervening faces. The exponential function was given by

exp ({li=10) where 10 denotes the chosen time constant (in units

of number of faces presented).

We generated data sets with a range of signal-to-noise ratios

(SNRs) similar to the simulations in [32]. Here SNR is defined as

the ratio of signal standard deviation to noise standard deviation.

Figure 2 shows the simulation results for the case of data generated

from the full model, and Figure 3 for data generated from the

reduced model. For the latter case, SD is almost exact as the noise

estimates converge to the same values for full and reduced models.

For the former case, SD becomes biased at high SNR because the

observed noise is over-estimated for the reduced model due to the

presence of unmodelled signals. However, this only occurs at very

large values of log Bayes factor (favouring the full model) so is

unlikely to have any practical effects on the resulting inference.

Prior Precisions
This simulation generates data from a design matrix that is

similar to many second-level models. We use a design matrix

X~IK61N which models K effects using data from N subjects.

This corresponds to a One-way ANOVA design with K levels. For

the simulations we set K~5 and N~20. We specify a prior over

regression coefficients to have zero mean and precision a~30 for

each coefficient. The observation noise precision was set to l~1.

We first draw the regression coefficients, w from this prior and

produce data using y~Xwze where e has zero mean and

precision l. We draw data at 1000 simulated voxels.

We then test for the effect of the first two regressors using the

contrast

CT~
1 0 0 0 0

0 1 0 0 0

� �
ð25Þ

The null model corresponding to this has design matrix

Xn~XCnull where Cnull~IK{CCz [42]. For the above contrast

we have

Figure 2. Log Bayes factor versus SNR for full versus reduced
model, when full model is true, for IMO approach (black line)
and Savage-Dickey (red line).
doi:10.1371/journal.pone.0059655.g002

Figure 3. Log Bayes factor versus SNR for full versus reduced
model, when reduced model is true, for IMO approach (black
line) and Savage-Dickey (red line). The lines overlap.
doi:10.1371/journal.pone.0059655.g003
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CT
null~

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
64

3
75 ð26Þ

The SD log Bayes factor is computed using equation 20 using

the true observation noise l~1. Instead of using the true a’s we

use a modified set of alphas. We draw ak (for the kth regression

coefficient) from a uniform distribution between plus and minus

U% percent of a~30. This mimics the variability introduced by

the Empirical Bayes estimates of the a’s.

We then compute the IMO log Bayes factor by separately

computing the model evidence for the full and null models. Again,

we use the true observation noise l~1 but use a modified set of

alphas. Here, the alphas for the full model are the same as for the

SD simulation above. But the alphas for the null model are

adjusted using the same uniform sampling approach to produce a

different set of ak’s. This reflects the fact that the Empirical Bayes

IMO approach uses two different sets of alphas; one for the full

model and one for the null model.

We repeat the above procedure for four levels of variability in

the prior precisions; U~0%, 17%, 33% or 50%. Figure 4 shows

SD versus IMO estimates of the log Bayes factor for these four

different levels. For all modifications of prior precisions, larger log

Bayes factors are accurately approximated. There is, however,

increasing levels of disagreement at the lower range. The most

noticeable feature is a ‘bottoming-out’, most clearly observable for

the 50% condition. This occurs because the IMO estimate is a

function of two sets of a’s (full and null model) whereas the SD

estimate is only a function of one set of a’s (full model).

For null prior precisions which are smaller than full prior

precisions, the IMO estimate is more negative - hence the dots left

of the red line in Figure 4. Null prior precisions larger than full

prior precisions produce dots to the right of the red line. Similar

results have been obtained (not shown) when using contrasts

testing for additive or differential effects.

We repeated the above procedure but this time using the

standard first-level fMRI design matrix. An observation noise

precision of l~5, which is representative of values estimated from

event-related fMRI data (see below), was set to be the same for

both models. The results are shown in Figure 5 for a contrast

testing for a differential effect. Again, we observe a bottoming-out

effect. Further simulations showed that the bottoming-out effect

could be produced for first- or second-level designs, and for subset,

differential or additive contrasts. This effect could be alleviated by

setting the observation noise precision to a sufficiently high level.

To summarise, SD and IMO agree well for moderately positive

IMO log BFs. But for negative IMO log Bayes factors, the

discrepancy becomes commensurately larger for decreasing

observation noise precision and increasing heterogeneity of the

prior precision estimates.

Finally, we compare SD and IMO estimates to the true log

Bayes factors. In these simulations, regression coefficients were

sampled from distributions with known prior precision (a~30, as

above) and this value was used to compute the true log Bayes

factor. IMO estimates were based on full prior precisions and null

prior precisions that were both modified by a maximum

proportion z. The SD estimates were based on the modified full

prior precisions. Bayes factors were then computed for 1000 data

sets and produced the results in Figure 6. Here we can see that SD

and IMO produce different patterns of errors in their estimation,

with SD showing a degree of bias and IMO showing a degree of

variance. We then computed the Root Mean Squared Error

(RMSE) in estimating the log Bayes factor for the above results.

This procedure was repeated 100 times. For U~17%, 33% and

50% the RMSE’s are 0.07, 0.14 and 0.24 for SD and 0.07, 0.15

and 0.25 for IMO. There is therefore very little difference in the

average accuracy of the estimates.

Taylor Approximation
We repeated the ‘first-level’ fMRI simulations described in the

above section on observation noise. But this time we hold the noise

precision fixed and look at the effect of approximating the

posterior density using the Taylor series approximation. We used

empirical values of observation noise levels from 2000 voxels of

first level fMRI data taken from slice z~{11mm (see below).

These ranged from l~0:05 to l~4:5. We compared the log

Bayes factors as estimated using SDT versus SD over 2000

simulated voxels and found excellent agreement. The SDT

estimates were within 0.00007%, 0.00009% and 0.00022% of

the SD values, for AR model orders of 1, 2 and 3 respectively.

Plots of SDT and SD versus SNR (not shown) are visually

indistinguishable.

First-level fMRI
We first fitted the first-level models using the ‘1st level’ Bayesian

estimation algorithm described in [20] using a ‘global’ prior. We

additionally constrained the analysis to within brain voxels using

an explicit mask (the brainmask.nii image in SPM’s apriori

directory). Model fitting took 6 minutes on a high-end desktop PC

(dual 3.2 GHz Intel Xeon CPUs, 12 GB Ram, 64-bit Windows

Vista).

We used the SDT approach to compute Bayes factors testing for

responses to non-familiar images (the fifth column of zeroes in the

contrast relates to the uninteresting constant column in the design

matrix, and is often not explicitly included when defining contrasts

in the SPM software)

CT
2 ~

1 0 0 0 0

0 1 0 0 0

� �
ð27Þ

The log Bayes factor at each voxel was computed using

equation 20. We also computed log BF maps using the IMO

approach by fitting two models. First, we fitted the standard model

and computed its log evidence, L1, at each voxel using equation 7.

Second, we fitted a reduced model which did not model responses

to non-familiar faces. Thus, the reduced model has three

regressors whereas the standard model has five. We then

computed the log evidence map L2. The log BF map testing for

responses to non-familiar faces is L1{L2. The models were

estimated using the ‘1st level’ Bayesian estimation algorithm

described in [20] using a ‘global’ prior. Model fitting took 14

minutes for the standard model and 12 minutes for the reduced

model. Each estimation took longer for the IMO approach

because the model evidence was computed at each voxel.

Figure 7 (top panel) plots SDT versus IMO log Bayes factors for

voxels in slice z~{11 mm. This shows good agreement, except at

large values of IMO log Bayes factor. The overall correlation is

r~0:993. The plot shows a similar effect to that observed in

Figure 2, suggesting that the discrepancy may be due to

inconsistent estimates of observation noise precision. We then

repeated the above analysis but with the contrast now testing for

the main effect of familiarity.
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CT
2 ~

1 0 {1 0 0

0 1 0 {1 0

� �
ð28Þ

This tests for differences between responses to familiar versus

unfamiliar faces, collapsed across repetition. Figure 7 (bottom

panel) plots SDT versus IMO log Bayes factors for voxels in slice

z~{11 mm. This shows poor agreement over a large range of

IMO log Bayes factor values. The overall correlation is r~0:707.

The plot shows a similar effect to that observed in Figure 5,

suggesting that the discrepancy may be due to inconsistent

estimates of prior precision in the context of large observation

noise.

Second-level fMRI
We fitted a second-level model to the FIR summary statistic

images as described earlier using the global shrinkage prior

approach [17]. This was a one-way ANOVA model with a single

time-bin factor. We then used SDT to compute the log Bayes

factors for comparing the standard model to a nested model which

did not include responses in the 3 time bins from 6–12 s. This was

implemented using equation 20 and the appropriate contrast (an

identity matrix over columns 4, 5 and 6). We then estimated this

log Bayes factor using the IMO approach by separately fitting the

standard and reduced models and computing the model evidences

using equation 7. Figure 8 (top panel) plots the log Bayes factors

for SDT versus IMO approaches for voxels in the z~{11 mm

slice. This shows a very strong correlation between the measures

(r~0:994). Our decision to look for late responses, in the 6–12 s

window, is rather arbitrary but we note that similarly good

agreements between SDT and IMO were found for other time

windows.

We also implemented a non-nested model comparison to find

where in the brain BOLD responses were better explained by a 4

to 6 s bin model versus a 6 to 8 s bin model. This model

comparison looks at the relative amounts of variance explained by

the different models, and is not the same as a contrast testing for a

difference in the mean response in each bin. This test was first

implemented using the SDT approach by specifying the two

contrasts and subtracting the resulting log Bayes factor images

using equation 22. This was then compared to the IMO approach

where we separately computed the evidence for each model. We

then plotted the log Bayes factors for SDT versus IMO approaches

in Figure 8 (bottom panel). This figure is for voxels in the

z~{11 mm slice. This shows a very strong correlation between

the measures (r~0:999). Similarly good agreements were found

over a range of time bin comparisons.

Discussion

Statistical Parametric Mapping (SPM) has become the domi-

nant paradigm for mass-univariate analysis of neuroimaging data.

This paper has examined an alternative Posterior Probability

Mapping (PPM) approach which offers two advantages (i)

inferences can be made about effect size, thus lending a precise

physiological meaning to activated regions, (ii) regions can be

declared inactive. This latter facility is most parsimoniously

provided by PPMs based on Bayesian model comparisons.

Figure 4. Second-level design. Savage-Dickey log Bayes factor versus IMO log Bayes factor for four levels of variability in prior
precisions: 0% (top left), 17% (top right), 33% (bottom left) and 50% (bottom right). The red line denotes equality.
doi:10.1371/journal.pone.0059655.g004
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Figure 5. First-level design. Savage-Dickey log Bayes factor versus IMO log Bayes factor for four levels of variability in prior
precisions: 0% (top left), 17% (top right), 33% (bottom left) and 50% (bottom right). The red line denotes equality.
doi:10.1371/journal.pone.0059655.g005

Figure 6. Left Panel: Savage-Dickey log Bayes factor versus true log Bayes factors for four levels of variability in prior precisions.
Right Panel: IMO log Bayes factor versus true log Bayes factors for four levels of variability in prior precisions. These are 0% (first row), 17% (second
row), 33% (third row) and 50% (last row).
doi:10.1371/journal.pone.0059655.g006
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Previously, these comparisons have been implemented by an

Independent Model Optimization (IMO) procedure which sepa-

rately fits null and alternative models. In this paper we have

proposed a more computationally efficient method based on

Savage-Dickey approximations to the Bayes factor and Taylor

series approximations to the voxel-wise posterior covariance

matrices.

The IMO approach is more time consuming both due to the

time taken to estimate the models and the user’s time taken to set

up the relevant design matrices. The Savage-Dickey-Taylor (SDT)

approach is quicker on both counts and allows the user to explore

the model space in a truly interactive way which is analagous to

the use of F-contrasts in classical inference. Simulations show that

the accuracy of the SDT method is comparable to that of the IMO

method. Results on fMRI data show a correlation between SDT

and IMO estimates, that is consistently high for second-level data,

but is only moderately high for first-level data.

Our current Empirical Bayes implementation for estimating

prior precisions works slice-by-slice for first-level data, due to

computational constraints, but over the whole volume for second-

level data. This has the effect of rendering the estimates of prior

precisions more variable for the first than the second-level. The

results in this paper suggest we revisit this implementation. Until

these first-level estimates have been re-implemented we recom-

mend that SDT only be used at the second level.

In general, the SDT approach would be suitable for all

neuroimaging modalities. However, in this paper we have only

implemented it for the case of global shrinkage priors; these are

appropriate for fMRI because the null hypothesis is of no activity

on average [17]. For PET and M/EEG, when processed so that

the data features represent activation (or, more generally,

differences between conditions, whose expectation is zero under

the null hypothesis) the methods presented here are similarly

appropriate.

However, some modalities have imaging data that would not be

zero under the null, such as voxel-based morphometry (VBM),

whose voxel-wise data represent local tissue volumes [46] or forms

of PET with a single image per subject that does not represent a

difference between conditions, for example amyloid imaging [47].

For these data, shrinkage of the voxel-wise parameter estimates

towards a non-zero overall mean should be appropriate and

straightforward. We will therefore examine the use of SDT for

these non-zero mean priors in a future publication. This future

work will also extend SDT to work with spatial priors [20]. Both of

these extensions are mathematically straightforward but beyond

the scope of the current paper.

A Software Implementation
Many of the algorithms referred to in this paper are available in

the SPM software package which is available from http://www.fil.

ion.ucl.ac.uk/spm/. The PPM procedure employing global

shrinkage priors which shrink estimated parameters towards zero

[17] can be accessed in the user interface of SPM by choosing

‘2nd-level’ fMRI or M/EEG models and selecting the Bayesian

option. The PPM approach for the analysis of within-subject fMRI

Figure 7. First-level models. Top Panel: log Bayes factor for SDT
versus IMO approaches testing for any response to non-familiar faces.
The red line denotes equality. Bottom Panel: log Bayes factor for SDT
versus IMO approaches testing for main effect of familiarity
doi:10.1371/journal.pone.0059655.g007

Figure 8. Second-level models. Top Panel: log Bayes factor for SDT
versus IMO approaches testing for response in 6 to 12 s time bins. The
red line denotes equality. Bottom Panel: log Bayes factor for SDT versus
IMO approaches testing for responses that are better explained by a 4
to 6 s model than a 6 to 8 s model.
doi:10.1371/journal.pone.0059655.g008
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time series [26] can be accessed in the user interface of SPM by

choosing ‘1st level’ fMRI models and selecting the Bayesian

option.
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