91 research outputs found

    Physical, Chemical, and Petrological Characteristics of Chondritic Materials and Their Relationships to Small Solar System Bodies

    Get PDF
    Chondrite materials with varying abundances of volatile-bearing phases are expected at the destinations for the asteroid sample-return missions Hayabusa2 and OSIRIS-REx. The targets of the missions are 162173 (1999 JU3) Ryugu and 101955 (1999 RQ36) Bennu. Spectroscopic analyses of these asteroids suggest that their surface materials are related to types 1 and 2 carbonaceous chondrites. Some studies suggest that the parent bodies of these chondrites may have also experienced some thermal and/or shock metamorphism. The physical properties of boulders at asteroid surfaces and fine particles in asteroid regoliths are consequences of the diverse processes that fragmented them, mobilized them, and redeposited them in unique accumulations. Sample-return missions are likely to encounter a broad range of carbonaceous chondrite (CC)-like materials, to which aqueous alteration, thermal, and shock metamorphism imparted changes affecting their sub-micron- to meter-scale physical properties. Consequently, implementation of scale-dependent analytical techniques to the study of the chemical, physical, and geotechnical characteristics of these CC-like materials is fundamental to safe mission operations, sample selection, and return. However, most of the available knowledge for informing and formulating expectations about regolith processes, products, and properties on carbonaceous small bodies comes from missions that studied anhydrous (e.g., Itokawa studied by Hayabusa) and/or much larger asteroids (e.g., Vesta studied by Dawn). No previous mission is likely directly relevant to small ice-free carbonaceous NEOs 162173 Ryugu or 101955 Bennu, although the Rosetta Spaceraft performed a flyby of the large asteroid Lutetia which has variously been classified as M and C type (Ptzold et al., 2011). Carbonaceous chondrites carry the best record of the history, distribution, and activity of water in the early solar system. Ordinary and Enstatite chondrites carry only partial records, but these are still critical to understanding the full story. We will describe the records of water-rock interactions on asteroids, as recorded in these meteorites, with particular emphasis on the timing, nature, settings, and fluid compositions. An integral part of this story is the rare, but fortunate, preservation of actual early solar system water as aqueous fluid inclusions

    On the Relationship between Cosmic Ray Exposure Ages and Petrography of CM Chondrites

    Get PDF
    Carbonaceous (C) chondrites are potentially the most primitive among chondrites because they mostly escaped thermal metamorphism that affected the other chondrite groups. C chondrites are chemically distinguished from other chondrites by their high Mg/Si ratios and refractory elements, and have experienced various degrees of aqueous alteration. They are subdivided into eight subgroups (CI, CM, CO, CV, CK, CR, CB and CH) based on major element and oxygen isotopic ratios. Their elemental ratios vary over a wide range, in contrast to those of ordinary and enstatite chondrites which are relatively uniform. It is critical to know how many separate bodies are represented by the C chondrites. In this study we defined 4 distinct cosmic-ray exposure (CRE) age groups of CMs and systematically characterized the petrography in each of the 4 CRE age groups to determine whether the groups have significant petrographic differences with such differences probably reflecting different parent body (asteroid) geological processing, or multiple original bodies. We have reported the results of a preliminary grouping at the NIPR Symp. in 2013 [3], however, we revised the grouping and here report our new results

    What Are Space Exposure Histories Telling Us about CM Carbonaceous Chondrites?

    Get PDF
    Chondrites are chemically primitive and carbonaceous (C) chondrites are potentially the most primitive among them because they mostly escaped thermal metamor-phism that affected the other chondrite groups and ratios of their major, non-volatile and most of the volatile elements are similar to those of the Sun. Therefore, C chondrites are ex-pected to retain a good record of the origin and early history of the solar system. Carbonaceous chondrites are chemically differentiated from other chondrites by their high Mg/Si ratios and refractory elements, and have experienced various degrees of aqueous alteration. They are subdivided into eight subgroups (CI, CM, CO, CV, CK, CR, CB and CH) based on major element and oxygen isotopic ratios. Their elemental ratios spread over a wide range though those of ordinary and enstatite chondrites are relatively uniform. It is critical to know how many sepa-rate bodies are represented by the C chondrites. In this study, CM chondrites, the most abundant carbona-ceous chondrites, are examined. They are water-rich, chon-drule- and CAI-bearing meteorites and most of them are brec-cias. High-temperature components such as chondrules, iso-lated olivine and CAIs in CMs are frequently altered and some of them are replaced by clay minerals and surrounded by sul-fides whose Fe was derived from mafic silicates. On the basis of degrees of aqueous alteration, CMs have been classified into subtypes from 1 to 2, although Rubin et al. [1] assigned subtype 1 to subtype 2 and subtype 2 to subtype 2.6 using various petrologic properties. The classification is based on petrographic and mineralogic properties. For example, though tochilinite (2[(Fe, Mg, Cu, Ni[])S] 1.57-1.85 [(Mg, Fe, Ni, Al, Ca)(HH)2]) clumps are produced during aqueous alteration, they disappear and sulfide appears with increasing degrees of aqueous alteration. Cosmic-ray exposure (CRE) age measurements of CM chondrites reveal an unusual feature. Though CRE ages of other chondrite groups range from several Myr to tens of Myr, CMs exposure ages are not longer than 7 Myr with one-third of the CM having less than 1 Myr CRE age. For those CM chondrites that have CRE ages <1 Myr, there are two discern-able CRE peaks. Because a CRE age reflects how long a me-teorite is present as a separate body in space, the peaks pre-sumably represent collisional events on the parent body (ies) [2]. In this study we defined 4 distinct CRE age groups of CMs and systematically characterized the petrography in each of the 4 CRE age groups to determine whether the groups have significant petrographic differences, with such differences probably reflecting different parent body (asteroid) geological processing, or multiple original bodies

    Sequestration of Martian CO2 by mineral carbonation

    Get PDF
    Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth’s crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysis show that olivine and a plagioclase feldspar-rich mesostasis in the Lafayette meteorite have been replaced by carbonate. The susceptibility of olivine to replacement was enhanced by the presence of smectite veins along which CO2-rich fluids gained access to grain interiors. Lafayette was partially carbonated during the Amazonian, when liquid water was available intermittently and atmospheric CO2 concentrations were close to their present-day values. Earlier in Mars’ history, when the planet had a much thicker atmosphere and an active hydrosphere, carbonation is likely to have been an effective mechanism for sequestration of CO2

    High elevation watersheds in the southern Appalachians: Indicators of sensitivity to acidic deposition and the potential for restoration through liming

    Get PDF
    Southern Appalachian high elevation watersheds have deep rocky soils with high organic matter content, different vegetation communities, and receive greater inputs of acidic deposition compared to low elevation sites within the region. Since the implementation of the Clean Air Act Amendment in the 1990s, concentrations of acidic anions in rainfall have declined. However, some high elevation streams continue to show signs of chronic to episodic acidity, where acid neutralizing capacity (ANC) ranges from 0 to 20 µeq L-1. We studied three 3rd order watersheds (North River in Cherokee National Forest, Santeetlah Creek in Nantahala National Forest, and North Fork of the French Broad in Pisgah National Forest) and selected four to six 1st order catchments within each watershed to represent a gradient in elevation (849–1526 m) and a range in acidic stream ANC values (11–50 leq L-1). Our objectives were to (1) identify biotic, physical and chemical catchment parameters that could be used as indices of stream ANC, pH and Ca:Al molar ratios and (2) estimate the lime required to restore catchments from the effects of excess acidity and increase base cation availability. We quantified each catchment’s biotic, physical, and chemical characteristics and collected stream, O-horizon, and mineral soil samples for chemical analysis seasonally for one year. Using repeated measures analysis, we examined variability in stream chemistry and catchment characteristics; we used a nested split-plot design to identify catchment characteristics that were correlated with stream chemistry. Watersheds differed significantly and the catchments sampled provided a wide range of stream chemical, biotic, physical and chemical characteristics. Variability in stream ANC, pH, and Ca:Al molar ratio were significantly correlated with catchment vegetation characteristics (basal area, tree height, and tree diameter) as well as O-horizon nitrogen and aluminum concentrations. Total soil carbon and calcium (an indicator of parent material), were significant covariates for stream ANC, pH and Ca:Al molar ratios. Lime requirement estimates did not differ among watersheds but this data will help select catchments for future restoration and lime application studies. Not surprisingly, this work found many vegetation and chemical characteristics that were useful indicators of stream acidity. However, some expected relationships such as concentrations of mineral soil extractable Ca and SO4 were not significant. This suggests that an extensive test of these indicators across the southern Appalachians will be required to identify high elevation forested catchments that would benefit from restoration activities

    Evidence for mechanical and chemical alteration of iron‐nickel meteorites on Mars: Process insights for Meridiani Planum

    Get PDF
    The weathering of meteorites found on Mars involves chemical and physical processes that can provide clues to climate conditions at the location of their discovery. Beginning on sol 1961, the Opportunity rover encountered three large iron meteorites within a few hundred meters of each other. In order of discovery, these rocks have been assigned the unofficial names Block Island, Shelter Island, and Mackinac Island. Each rock presents a unique but complimentary set of features that increase our understanding of weathering processes at Meridiani Planum. Significant morphologic characteristics interpretable as weathering features include (1) a large pit in Block Island, lined with delicate iron protrusions suggestive of inclusion removal by corrosive interaction; (2) differentially eroded kamacite and taenite lamellae in Block Island and Shelter Island, providing relative timing through crosscutting relationships with deposition of (3) an iron oxide&ndash;rich dark coating; (4) regmaglypted surfaces testifying to regions of minimal surface modification, with other regions in the same meteorites exhibiting (5) large‐scale, cavernous weathering (in Shelter Island and Mackinac Island). We conclude that the current size of the rocks is approximate to their original postfall contours. Their morphology thus likely results from a combination of atmospheric interaction and postfall weathering effects. Among our specific findings is evidence supporting (1) at least one possible episode of aqueous acidic exposure for Block Island; (2) ripple migration over portions of the meteorites; (3) a minimum of two separate episodes of wind abrasion; alternating with (4) at least one episode of coating‐forming chemical alteration, most likely at subzero temperatures

    Mineralogy and petrology of comet 81P/wild 2 nucleus samples

    Get PDF
    The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk
    corecore