348 research outputs found
How good must single photon sources and detectors be for efficient linear optical quantum computation?
We present a scheme for linear optical quantum computation (LOQC) which is
highly robust to imperfect single photon sources and inefficient detectors. In
particular we show that if the product of the detector efficiency with the
source efficiency is greater than 2/3, then efficient LOQC is possible. This
threshold is many orders of magnitude more relaxed than those which could be
inferred by application of standard results in fault tolerance. The result is
achieved within the cluster state paradigm for quantum computation.Comment: New version contains an Added Appendi
Loss tolerant linear optical quantum memory by measurement-based quantum computing
We give a scheme for loss tolerantly building a linear optical quantum memory which itself is tolerant to qubit loss. We use the encoding recently introduced in Varnava et al 2006 Phys. Rev. Lett. 97 120501, and give a method for efficiently achieving this. The entire approach resides within the 'one-way' model for quantum computing (Raussendorf and Briegel 2001 Phys. Rev. Lett. 86 5188–91; Raussendorf et al 2003 Phys. Rev. A 68 022312). Our results suggest that it is possible to build a loss tolerant quantum memory, such that if the requirement is to keep the data stored over arbitrarily long times then this is possible with only polynomially increasing resources and logarithmically increasing individual photon life-times
Topological fault-tolerance in cluster state quantum computation
We describe a fault-tolerant version of the one-way quantum computer using a
cluster state in three spatial dimensions. Topologically protected quantum
gates are realized by choosing appropriate boundary conditions on the cluster.
We provide equivalence transformations for these boundary conditions that can
be used to simplify fault-tolerant circuits and to derive circuit identities in
a topological manner. The spatial dimensionality of the scheme can be reduced
to two by converting one spatial axis of the cluster into time. The error
threshold is 0.75% for each source in an error model with preparation, gate,
storage and measurement errors. The operational overhead is poly-logarithmic in
the circuit size.Comment: 20 pages, 12 figure
Teleportation-based realization of an optical quantum two-qubit entangling gate
In recent years, there has been heightened interest in quantum teleportation,
which allows for the transfer of unknown quantum states over arbitrary
distances. Quantum teleportation not only serves as an essential ingredient in
long-distance quantum communication, but also provides enabling technologies
for practical quantum computation. Of particular interest is the scheme
proposed by Gottesman and Chuang [Nature \textbf{402}, 390 (1999)], showing
that quantum gates can be implemented by teleporting qubits with the help of
some special entangled states. Therefore, the construction of a quantum
computer can be simply based on some multi-particle entangled states, Bell
state measurements and single-qubit operations. The feasibility of this scheme
relaxes experimental constraints on realizing universal quantum computation.
Using two different methods we demonstrate the smallest non-trivial module in
such a scheme---a teleportation-based quantum entangling gate for two different
photonic qubits. One uses a high-fidelity six-photon interferometer to realize
controlled-NOT gates and the other uses four-photon hyper-entanglement to
realize controlled-Phase gates. The results clearly demonstrate the working
principles and the entangling capability of the gates. Our experiment
represents an important step towards the realization of practical quantum
computers and could lead to many further applications in linear optics quantum
information processing.Comment: 10 pages, 6 figure
Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion
The ability to transduce non-classical states of light from one wavelength to
another is a requirement for integrating disparate quantum systems that take
advantage of telecommunications-band photons for optical fiber transmission of
quantum information and near-visible, stationary systems for manipulation and
storage. In addition, transducing a single-photon source at 1.3 {\mu}m to
visible wavelengths for detection would be integral to linear optical quantum
computation due to the challenges of detection in the near-infrared. Recently,
transduction at single-photon power levels has been accomplished through
frequency upconversion, but it has yet to be demonstrated for a true
single-photon source. Here, we transduce the triggered single-photon emission
of a semiconductor quantum dot at 1.3 {\mu}m to 710 nm with a total detection
(internal conversion) efficiency of 21% (75%). We demonstrate that the 710 nm
signal maintains the quantum character of the 1.3 {\mu}m signal, yielding a
photon anti-bunched second-order intensity correlation, g^(2)(t), that shows
the optical field is composed of single photons with g^(2)(0) = 0.165 < 0.5.Comment: 7 pages, 4 figure
Quantum Optical Systems for the Implementation of Quantum Information Processing
We review the field of Quantum Optical Information from elementary
considerations through to quantum computation schemes. We illustrate our
discussion with descriptions of experimental demonstrations of key
communication and processing tasks from the last decade and also look forward
to the key results likely in the next decade. We examine both discrete (single
photon) type processing as well as those which employ continuous variable
manipulations. The mathematical formalism is kept to the minimum needed to
understand the key theoretical and experimental results
Narrowband Biphotons: Generation, Manipulation, and Applications
In this chapter, we review recent advances in generating narrowband biphotons
with long coherence time using spontaneous parametric interaction in monolithic
cavity with cluster effect as well as in cold atoms with electromagnetically
induced transparency. Engineering and manipulating the temporal waveforms of
these long biphotons provide efficient means for controlling light-matter
quantum interaction at the single-photon level. We also review recent
experiments using temporally long biphotons and single photons.Comment: to appear as a book chapter in a compilation "Engineering the
Atom-Photon Interaction" published by Springer in 2015, edited by A.
Predojevic and M. W. Mitchel
Efficient and long-lived quantum memory with cold atoms inside a ring cavity
Quantum memories are regarded as one of the fundamental building blocks of
linear-optical quantum computation and long-distance quantum communication. A
long standing goal to realize scalable quantum information processing is to
build a long-lived and efficient quantum memory. There have been significant
efforts distributed towards this goal. However, either efficient but
short-lived or long-lived but inefficient quantum memories have been
demonstrated so far. Here we report a high-performance quantum memory in which
long lifetime and high retrieval efficiency meet for the first time. By placing
a ring cavity around an atomic ensemble, employing a pair of clock states,
creating a long-wavelength spin wave, and arranging the setup in the
gravitational direction, we realize a quantum memory with an intrinsic spin
wave to photon conversion efficiency of 73(2)% together with a storage lifetime
of 3.2(1) ms. This realization provides an essential tool towards scalable
linear-optical quantum information processing.Comment: 6 pages, 4 figure
A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland
1. Agricultural intensification and associated loss of high‐quality habitats are key drivers of insect pollinator declines. With the aim of decreasing the environmental impact of agriculture, the 2014 EU Common Agricultural Policy (CAP) defined a set of habitat and landscape features (Ecological Focus Areas: EFAs) farmers could select from as a requirement to receive basic farm payments. To inform the post‐2020 CAP, we performed a European‐scale evaluation to determine how different EFA options vary in their potential to support insect pollinators under standard and pollinator‐friendly management, as well as the extent of farmer uptake.
2. A structured Delphi elicitation process engaged 22 experts from 18 European countries to evaluate EFAs options. By considering life cycle requirements of key pollinating taxa (i.e. bumble bees, solitary bees and hoverflies), each option was evaluated for its potential to provide forage, bee nesting sites and hoverfly larval resources.
3. EFA options varied substantially in the resources they were perceived to provide and their effectiveness varied geographically and temporally. For example, field margins provide relatively good forage throughout the season in Southern and Eastern Europe but lacked early‐season forage in Northern and Western Europe. Under standard management, no single EFA option achieved high scores across resource categories and a scarcity of late season forage was perceived.
4. Experts identified substantial opportunities to improve habitat quality by adopting pollinator‐friendly management. Improving management alone was, however, unlikely to ensure that all pollinator resource requirements were met. Our analyses suggest that a combination of poor management, differences in the inherent pollinator habitat quality and uptake bias towards catch crops and nitrogen‐fixing crops severely limit the potential of EFAs to support pollinators in European agricultural landscapes.
5. Policy Implications. To conserve pollinators and help protect pollination services, our expert elicitation highlights the need to create a variety of interconnected, well‐managed habitats that complement each other in the resources they offer. To achieve this the Common Agricultural Policy post‐2020 should take a holistic view to implementation that integrates the different delivery vehicles aimed at protecting biodiversity (e.g. enhanced conditionality, eco‐schemes and agri‐environment and climate measures). To improve habitat quality we recommend an effective monitoring framework with target‐orientated indicators and to facilitate the spatial targeting of options collaboration between land managers should be incentivised
Experimental measurement-based quantum computing beyond the cluster-state model
The paradigm of measurement-based quantum computation opens new experimental
avenues to realize a quantum computer and deepens our understanding of quantum
physics. Measurement-based quantum computation starts from a highly entangled
universal resource state. For years, clusters states have been the only known
universal resources. Surprisingly, a novel framework namely quantum computation
in correlation space has opened new routes to implement measurement-based
quantum computation based on quantum states possessing entanglement properties
different from cluster states. Here we report an experimental demonstration of
every building block of such a model. With a four-qubit and a six-qubit state
as distinct from cluster states, we have realized a universal set of
single-qubit rotations, two-qubit entangling gates and further Deutsch's
algorithm. Besides being of fundamental interest, our experiment proves
in-principle the feasibility of universal measurement-based quantum computation
without using cluster states, which represents a new approach towards the
realization of a quantum computer.Comment: 26 pages, final version, comments welcom
- …
