287 research outputs found
The variable origin of the lateral circumflex femoral artery: a meta-analysis and proposal for a new classification system
The lateral circumflex femoral artery (LCFA) is responsible for vascularisation of the head and neck of the femur, greater trochanter, vastus lateralis and the knee. The origin of the LCFA has been reported to vary significantly throughout the literature, with numerous branching patterns described and variable distances to the mid-inguinal point reported. The aim of this study was to determine the estimated population prevalence and pooled means of these anatomical characteristics, and review their associated clinical relevance. A search of the major electronic databases was performed to identify all articles reporting data on the origin of the lateral circumflex femoral artery and its distance to the mid-inguinal point. Additionally, an extensive search of the references of all relevant articles was performed. All data on origin, branching, and distance to mid-inguinal point was extracted and pooled into a meta-analysis. A total of 26 articles (n = 3731 lower limbs) were included in the meta-analysis. Lateral circumflex femoral artery most commonly originates from the deep femoral artery with a pooled prevalence of 76.1% (95% confidence interval 69.4–79.3). The deep femoral artery-derived lateral circumflex femoral artery was found to originate with a mean pooled distance of 51.06 mm (95% confidence interval 44.61–57.51 mm) from the mid-inguinal point. Subgroup analysis of both gender and limb side data were consistent with these findings. Due to variability in the lateral circumflex femoral artery’s origin and distance to mid-inguinal point, anatomical knowledge is crucial for clinicians to avoid iatrogenic injuries when performing procedures in the femoral region, and thus radiographic assessment prior to surgery is recommended. Lastly, we propose a new classification system for origin of the lateral circumflex femoral arter
Rapid and sustained environmental responses to global warming: the Paleocene–Eocene Thermal Maximum in the eastern North Sea
The Paleocene–Eocene Thermal Maximum (PETM; ∼ 55.9 Ma) was a period of rapid and sustained global warming associated with significant carbon emissions. It coincided with the North Atlantic opening and emplacement of the North Atlantic Igneous Province (NAIP), suggesting a possible causal relationship. Only a very limited number of PETM studies exist from the North Sea, despite its ideal position for tracking the impact of both changing climate and NAIP activity. Here we present sedimentological, mineralogical, and geochemical proxy data from Denmark in the eastern North Sea, exploring the environmental response to the PETM. An increase in the chemical index of alteration and a kaolinite content up to 50 % of the clay fraction indicate an influx of terrestrial input shortly after the PETM onset and during the recovery, likely due to an intensified hydrological cycle. The volcanically derived zeolite and smectite minerals comprise up to 36 % and 90 % of the bulk and clay mineralogy respectively, highlighting the NAIP's importance as a sediment source for the North Sea and in increasing the rate of silicate weathering during the PETM. X-Ray fluorescence element core scans also reveal possible hitherto unknown NAIP ash deposition both prior to and during the PETM. Geochemical proxies show that an anoxic to sulfidic environment persisted during the PETM, particularly in the upper half of the PETM body with high concentrations of molybdenum (MoEF > 30), uranium (UEF up to 5), sulfur (∼ 4 wt %), and pyrite (∼ 7 % of bulk). At the same time, export productivity and organic-matter burial reached its maximum intensity. These new records reveal that negative feedback mechanisms including silicate weathering and organic carbon sequestration rapidly began to counteract the carbon cycle perturbations and temperature increase and remained active throughout the PETM. This study highlights the importance of shelf sections in tracking the environmental response to the PETM climatic changes and as carbon sinks driving the PETM recovery.publishedVersio
40Ar/39Ar ages of the sill complex of the Karoo large igneous province: implications for the Pliensbachian-Toarcian climate change.
Reliable geochronological results gathered so far (n = 76) have considerably constrained the timing of the emplacement of the Karoo large igneous province (LIP). Yet strikingly missing from this dating effortis the huge southern sill complex cropping out in the >0.6 x 10(6) km2 Main Karoo sedimentary basin. We present 16 new 40Ar/39Ar analyses carried out on fresh plagioclase and biotite separates from 15 sill samples collected along a N-S trend in the eastern part of the basin. The results show a large range of plateau and miniplateau ages (176.2 +- 1.3 to 183.8 +- 2.4 Ma), with most dates suggesting a -3 Ma (181-184 Ma) duration for the main sill events. The available age database allows correlation of the Karoo LIP emplacement with the Pliensbachian-Toarcian second-order biotic extinction, the global warming, and the Toarcian anoxic event (provided that adequate calibration between the 40K and 238U decay constant ismade). The mass extinction and the isotopic excursions recorded at the base of the Toarcian appear to be synchronous with both the increase of magma emission of the Karoo LIP and the emplacement of the sills.The CO2 and SO2 derived from both volcanic emissions as well as carbon-rich sedimentary layers intrudedby sills might be the main culprits of the Pliensbachian-Toarcian climate perturbations. We propose that the relatively low eruption rate of the Karoo LIP is one of the main reasons explaining why its impact on thebiosphere is relatively low contrary to, e.g., the CAMP (Triassic-Jurassic) and Siberia (Permo-Triassic) LIPs
3D structure and formation of hydrothermal vent complexes at the Paleocene-Eocene transition, the Møre Basin, mid-Norwegian margin
Acknowledgments We thank Statoil for providing us with the PL251 (Tulipan) geophysical and geologic reports for well 6302/6- 1. We thank NORSAR for the free academic use of the SeisRox software during the modeling procedures and to Schlumberger for the free academic use of Petrel 2015. Spectral decomposition was carried out using FFA Geoteric software at the University of Aberdeen. FFA are thanked for donation of the software license to the University of Aberdeen. The authors further acknowledge the support from the Research Council of Norway through its Center of Excellence funding scheme, project 223272 (CEED), and from the MIMES project (grant no. 244155). We also gratefully acknowledge the support by the Faculty of Mathematics and Natural Sciences of the University of Oslo to TS. Clayton Grove and Craig Magee are thanked for their many insightful comments and suggestions that helped improve the paper substantially.Peer reviewedPublisher PD
Metabolic maturation in the first 2 years of life in resource-constrained settings and its association with postnatal growths
Funding Information: The Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development Project (MAL-ED) is carried out as a collaborative project supported by the Bill & Melinda Gates Foundation (BMGF 47075), the Foundation for the National Institutes of Health, and the National Institutes of Health, Fogarty International Center, while additional support was obtained from BMGF for the examination of host innate factors on enteric disease risk and enteropathy (grants OPP1066146 and OPP1152146 to M.N.K.). Additional funding was obtained from the Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases of the Johns Hopkins School of Medicine (to M.N.K.). Publisher Copyright: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).Peer reviewedPublisher PD
Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer
The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks forming dimers, trimers, and tetramers. Modification of peptide nucleic acid (PNA) with the O6-benzyl guanine (BG) group allowed the generation of site-selective covalent links between PNA and the SNAP protein. The modified BG-PNAs were labeled with fluorescent Atto dyes and subsequently chemo-selectively conjugated to SNAP protein. Efficient assembly into dimer and oligomer forms was verified via size exclusion chromatography (SEC), electrophoresis (SDS-PAGE), and fluorescence spectroscopy. DNA directed assembly of homo- and hetero-dimers of SNAP-PNA constructs induced homo- and hetero-FRET, respectively. Longer DNA scaffolds controllably aligned similar fluorescent SNAP-PNA constructs into higher oligomers exhibiting homo-FRET. The combined SEC and homo-FRET studies indicated the 1:1 and saturated assemblies of SNAP-PNA-fluorophore:DNA formed preferentially in this system. This suggested a kinetic/stoichiometric model of assembly rather than binomially distributed products. These BG-PNA-fluorophore building blocks allow facile introduction of fluorophores and/or assembly directing moieties onto any protein containing SNAP. Template directed assembly of PNA modified SNAP proteins may be used to investigate clustering behavior both with and without fluorescent labels which may find use in the study of assembly processes in cells
Emplacement of inflated Pāhoehoe flows in the Naude’s Nek Pass, Lesotho remnant, Karoo continental flood basalt province: use of flow-lobe tumuli in understanding flood basalt emplacement
Physical volcanological features are presented for a 710-m-thick section, of the Naude’s Nek Pass, within the lower part of the Lesotho remnant of the Karoo Large Igneous Province. The section consists of inflated pāhoehoe lava with thin, impersistent sedimentary interbeds towards the base. There are seven discreet packages of compound and hummocky pāhoehoe lobes containing flow-lobe tumuli, making up approximately 50% of the section. Approximately 45% of the sequence consists of 14 sheet lobes, between 10 and 52-m-thick. The majority of the sheet lobes are in two packages indicating prolonged periods of lava supply capable of producing thick sheet lobes. The other sheet lobes are as individual lobes or pairs, within compound flows, suggesting brief increases in lava supply rate. We suggest, contrary to current belief, that there is no evidence that compound flows are proximal to source and sheet lobes (simple flows) are distal to source and we propose that the presence of flow-lobe tumuli in compound flows could be an indicator that a flow is distal to source. We use detailed, previously published, studies of the Thakurvadi Formation (Deccan Traps) as an example. We show that the length of a lobe and therefore the sections that are ‘medial or distal to source’ are specific to each individual lobe and are dependent on the lava supply of each eruptive event, and as such flow lobe tumuli can be used as an indicator of relative distance from source
Distinct degassing pulses during magma invasion in the stratified Karoo Basin – New insights from hydrothermal fluid flow modelling
Magma emplacement in organic‐rich sedimentary basins is a main driver of past environmental crises. Using a 2D numerical model, we investigate the process of thermal cracking in contact aureoles of cooling sills and subsequent transport and emission of thermogenic methane by hydrothermal fluids. Our model includes a Mohr‐Coulomb failure criterion to initiate hydrofracturing and a dynamic porosity/permeability. We investigate the Karoo Basin, taking into account host‐rock material properties from borehole data, realistic total organic carbon content, and different sill geometries. Consistent with geological observations, we find that thermal plumes quickly rise at the edges of saucer‐shaped sills, guided along vertically fractured high permeability pathways. Contrastingly, less focused and slower plumes rise from the edges and the central part of flat‐lying sills. Using a novel upscaling method based on sill‐to‐sediment ratio we find that degassing of the Karoo Basin occurred in two distinct phases during magma invasion. Rapid degassing triggered by sills emplaced within the top 1.5 km emitted ~1.6·103 Gt of thermogenic methane, while thermal plumes originating from deeper sills, carrying a 12‐times greater mass of methane, may not reach the surface. We suggest that these large quantities of methane could be re‐mobilized by the heat provided by neighboring sills. We conclude that the Karoo LIP may have emitted as much as ~22.3·103 Gt of thermogenic methane in the half million years of magmatic activity, with emissions up to 3 Gt/year. This quantity of methane and the emission rates can explain the negative δ13C excursion of the Toarcian environmental crisis.
Key Points
Sill geometry and emplacement depth as well as intruded host rock type are the main factors controlling methane mobilization and degassing
Dehydration‐related porosity increase and pore‐pressure‐induced hydrofracturing are important mechanisms for a quick transport of methane from sill to the surface
The Karoo Basin may have degassed ~22.3·103 Gt of thermogenic methane in the half million years of magmatic activit
Measuring socioeconomic status in multicountry studies: Results from the eight-country MAL-ED study
Background: There is no standardized approach to comparing socioeconomic status (SES) across multiple sites in epidemiological studies. This is particularly problematic when cross-country comparisons are of interest. We sought to develop a simple measure of SES that would perform well across diverse, resource-limited settings. Methods: A cross-sectional study was conducted with 800 children aged 24 to 60 months across eight resource-limited settings. Parents were asked to respond to a household SES questionnaire, and the height of each child was measured. A statistical analysis was done in two phases. First, the best approach for selecting and weighting household assets as a proxy for wealth was identified. We compared four approaches to measuring wealth: maternal education, principal components analysis, Multidimensional Poverty Index, and a novel variable selection approach based on the use of random forests. Second, the selected wealth measure was combined with other relevant variables to form a more complete measure of household SES. We used child height-for-age Z-score (HAZ) as the outcome of interest. Results: Mean age of study children was 41 months, 52% were boys, and 42% were stunted. Using cross-validation, we found that random forests yielded the lowest prediction error when selecting assets as a measure of household wealth. The final SES index included access to improved water and sanitation, eight selected assets, maternal education, and household income (the WAMI index). A 25% difference in the WAMI index was positively associated with a difference of 0.38 standard deviations in HAZ (95% CI 0.22 to 0.55). Conclusions: Statistical learning methods such as random forests provide an alternative to principal components analysis in the development of SES scores. Results from this multicountry study demonstrate the validity of a simplified SES index. With further validation, this simplified index may provide a standard approach for SES adjustment across resource-limited settings.publishedVersio
- …