1,268 research outputs found
Diagnostic accuracy of TB-LAMP for pulmonary tuberculosis: a systematic review and meta-analysis.
BACKGROUND:The need for a rapid, molecular test to diagnose tuberculosis (TB) has prompted exploration of TB-LAMP (Eiken; Tokyo, Japan) for use in resource-limited settings. We conducted a systematic review to assess the accuracy of TB-LAMP as a diagnostic test for pulmonary TB. METHODS:We analyzed individual-level data for eligible patients from all studies of TB-LAMP conducted between Jan 2012 and October 2015 to compare the diagnostic accuracy of TB-LAMP with that of smear microscopy and Xpert MTB/RIF® using 3 reference standards of varying stringency. Pooled sensitivity and specificity and pooled differences in sensitivity and specificity were estimated using random effects meta-analysis. Study quality was evaluated using QUADAS-2. RESULTS:Four thousand seven hundred sixty individuals across 13 studies met eligibility criteria. Methodological quality was judged to be low for all studies. TB-LAMP had higher sensitivity than sputum smear microscopy (pooled sensitivity difference + 13·2, 95% CI 4·5-21·9%) and similar sensitivity to Xpert MTB/RIF (pooled sensitivity difference - 2·5, 95% CI -8·0 to + 2·9) using the most stringent reference standard available. Specificity of TB-LAMP was similar to that of sputum smear microscopy (pooled specificity difference - 1·8, 95% CI -3·8 to + 0·2) and Xpert MTB/RIF (pooled specificity difference 0·5, 95% CI -0·9 to + 1·8). CONCLUSIONS:From the perspective of diagnostic accuracy, TB-LAMP may be considered as an alternative test for sputum smear microscopy. Additional factors such as cost, feasibility, and acceptability in settings that continue to rely on sputum smear microscopy should be considered when deciding to adopt this technology. Xpert MTB/RIF should continue to be preferred in settings where resource and infrastructure requirements are adequate and where HIV co-infection or drug-resistance is of concern
Trisubstituted pyrazolopyrimidines as novel angiogenesis inhibitors.
Current inhibitors of angiogenesis comprise either therapeutic antibodies (e.g. bevacicumab binding to VEGF-A) or small molecular inhibitors of receptor tyrosin kinases like e.g. sunitinib, which inhibits PDGFR and VEGFR. We have recently identified cyclin-dependent kinase 5 (Cdk5) as novel alternative and pharmacologically accessible target in the context of angiogenesis. In the present work we demonstrate that trisubstituted pyrazolo[4,3-d]pyrimidines constitute a novel class of compounds which potently inhibit angiogenesis. All seven tested compounds inhibited endothelial cell proliferation with IC(50) values between 1 and 18 µM. Interestingly, this seems not to be due to cytotoxicity, since none of them showed acute cytotoxic effects on endothelial cells at a concentration of 10 µM,. The three most potent compounds (LGR1404, LGR1406 and LGR1407) also inhibited cell migration (by 27, 51 and 31%, resp.), chemotaxis (by 50, 70 and 60% in accumulative distance, resp.), and tube formation (by 25, 60 and 30% of total tube length, resp.) at the non-toxic concentration of 10 µM. Furthermore, angiogenesis was reduced in vivo in the CAM assay by these three compounds. A kinase selectivity profiling revealed that the compounds prevalently inhibit Cdk2, Cdk5 and Cdk9. The phenotype of the migrating cells (reduced formation of lamellipodia, loss of Rac-1 translocation to the membrane) resembles the previously described effects of silencing of Cdk5 in endothelial cells. We conclude that especially LGR1406 and LGR1407 are highly attractive anti-angiogenic compounds, whose effects seem to largely depend on their Cdk5 inhibiting properties
The DAG1 transcription factor negatively regulates the seed-to-seedling transition in Arabidopsis acting on ABA and GA levels
BACKGROUND:
In seeds, the transition from dormancy to germination is regulated by abscisic acid (ABA) and gibberellins (GAs), and involves chromatin remodelling. Particularly, the repressive mark H3K27 trimethylation (H3K27me3) has been shown to target many master regulators of this transition. DAG1 (DOF AFFECTING GERMINATION1), is a negative regulator of seed germination in Arabidopsis, and directly represses the GA biosynthetic gene GA3ox1 (gibberellin 3-β-dioxygenase 1). We set to investigate the role of DAG1 in seed dormancy and maturation with respect to epigenetic and hormonal control.
RESULTS:
We show that DAG1 expression is controlled at the epigenetic level through the H3K27me3 mark during the seed-to-seedling transition, and that DAG1 directly represses also the ABA catabolic gene CYP707A2; consistently, the ABA level is lower while the GA level is higher in dag1 mutant seeds. Furthermore, both DAG1 expression and protein stability are controlled by GAs.
CONCLUSIONS:
Our results point to DAG1 as a key player in the control of the developmental switch between seed dormancy and germination
Changes in the gut microbiota of mice orally exposed to methylimidazolium ionic liquids
Ionic liquids are salts used in a variety of industrial processes, and being relatively non-volatile, are proposed as environmentally-friendly replacements for existing volatile liquids. Methylimidazolium ionic liquids resist complete degradation in the environment, likely because the imidazolium moiety does not exist naturally in biological systems. However, there is limited data available regarding their mammalian effects in vivo. This study aimed to examine the effects of exposing mice separately to 2 different methylimidazolium ionic liquids (BMI and M8OI) through their addition to drinking water. Potential effects on key target organs-the liver and kidney-were examined, as well as the gut microbiome. Adult male mice were exposed to drinking water containing ionic liquids at a concentration of 440 mg/L for 18 weeks prior to examination of tissues, serum, urine and the gut microbiome. Histopathology was performed on tissues and clinical chemistry on serum for biomarkers of hepatic and renal injury. Bacterial DNA was isolated from the gut contents and subjected to targeted 16S rRNA sequencing. Mild hepatic and renal effects were limited to glycogen depletion and mild degenerative changes respectively. No hepatic or renal adverse effects were observed. In contrast, ionic liquid exposure altered gut microbial composition but not overall alpha diversity. Proportional abundance of Lachnospiraceae, Clostridia and Coriobacteriaceae spp. were significantly greater in ionic liquid-exposed mice, as were predicted KEGG functional pathways associated with xenobiotic and amino acid metabolism. Exposure to ionic liquids via drinking water therefore resulted in marked changes in the gut microbiome in mice prior to any overt pathological effects in target organs. Ionic liquids may be an emerging risk to health through their potential effects on the gut microbiome, which is implicated in the causes and/or severity of an array of chronic disease in humans
The role of cytokinins in clubroot disease
Clubroot (Plasmodiophora brassicae) is a pathogen of Brassicaceae that causes significant reductions in yield as a consequence of gall formation in the root and hypocotyl of infected plants. The pathogen hijacks host vascular cambium development, and cytokinins are implicated in this process. This paper uses transcriptomics and metabolomics to investigate changes in cytokinin metabolism during gall formation of clubroot-infected Arabidopsis thaliana. RNASeq analysis of infected tissue showed that host cytokinin metabolism was strongly down-regulated both at the onset and late stages of gall formation. Expression of host genes associated with cytokinin biosynthesis, signalling, degradation and conjugation was strongly repressed. Analysis of cytokinin precursors, active components and conjugates by microanalytical techniques was consistent with these transcriptional responses. Two isopentenyltransferase genes associated with cytokinin biosynthesis are present in the P. brassicae genome and are expressed throughout gall formation. The impact of pathogen-derived cytokinins on the total cytokinin content of infected tissue and host gene expression was minimal in wild type plants. However, infection of ipt1;3;5;7 mutants that are severely restricted in their ability to synthesise active cytokinins led to an increase in expression of host cytokinin-responsive genes. We interpret these results as indicating that P. brassicae can synthesise small amounts of cytokinin, but this has little impact on the host plant as the ipt1;3;5;7 phenotype is not rescued. Intriguingly, plasmodial development was slowed and spore viability reduced in these mutants indicating a potential role for cytokinins in plasmodial development
Application of mineralogical, petrological and geochemical tools for evaluating the palaeohdrogeological evolution of the PADAMOT study sites
The role of Work Package (WP) 2 of the PADAMOT project – ‘Palaeohydrogeological Data
Measurements’ - has been to study late-stage fracture mineral and water samples from
groundwater systems in Spain, Sweden, United Kingdom and the Czech Republic, with the aim
of understanding the recent palaeohydrogeological evolution of these groundwater systems. In
particular, the project sought to develop and evaluate methods for obtaining information about
past groundwater evolution during the Quaternary (about the last 2 million years) by examining
how the late-stage mineralization might record mineralogical, petrographical and geochemical
evidence of how the groundwater system may have responded to past geological and
climatological changes.
Fracture-flow groundwater systems at six European sites were studied:
• Melechov Hill, in the Bohemian Massif of the Czech Republic: a shallow (0-100 m)
dilute groundwater flow system within the near-surface weathering zone in fractured
granitic rocks;
• Cloud Hill, in the English Midlands: a (~100 m) shallow dilute groundwater flow system
in fractured and dolomitized Carboniferous limestone;
• Los Ratones, in southwest Spain: an intermediate depth (0-500 m) dilute groundwater
flow system in fractured granitic rocks;
• Laxemar, in southeast Sweden: a deep (0-1000 m) groundwater flow system in fractured
granitic rocks. This is a complex groundwater system with potential recharge and
flushing by glacial, marine, lacustrine and freshwater during the Quaternary;
• Sellafield, northwest England: a deep (0-2000 m) groundwater flow system in fractured
Ordovician low-grade metamorphosed volcaniclastic rocks and discontinuous
Carboniferous Limestone, overlain by a Permo-Triassic sedimentary sequence with
fracture and matrix porosity. This is a complex coastal groundwater system with deep
hypersaline sedimentary basinal brines, and deep saline groundwaters in crystalline
basement rocks, overlain by a shallow freshwater aquifer system. The site was glaciated
several times during the Quaternary and may have been affected by recharge from glacial
meltwater;
• Dounreay, northeast Scotland: a deep (0-1400 m) groundwater flow system in fractured
Precambrian crystalline basement overlain by fractured Devonian sedimentary rocks.
This is within the coastal discharge area of a complex groundwater system, comprising
deep saline groundwater hosted in crystalline basement, overlain by a fracture-controlled
freshwater sedimentary aquifer system. Like Sellafield, this area experienced glaciation
and may potentially record the impact of glacial meltwater recharge.
In addition, a study has been made of two Quaternary sedimentary sequences in Andalusia in
southeastern Spain to provide a basis of estimating the palaeoclimatic history of the region that
could be used in any reconstruction of the palaeoclimatic history at the Los Ratones site:
• The Cúllar-Baza lacustrine sequence records information about precipitation and
palaeotemperature regimes, derived largely from the analysis of the stable isotope (δ18O
and δ13C) signatures from biogenic calcite (ostracod shells).
• The Padul Peat Bog sequence provided information on past vegetation cover and
palaeogroundwater inputs based on the study of fossil pollen and biomarkers as proxies
for past climate change.
Following on from the earlier EC 4th Framework EQUIP project, the focus of the PADAMOT
studies has been on calcite mineralization. Calcite has been identified as a late stage mineral, closely associated with hydraulically-conductive fractures in the present-day groundwater
systems at the Äspö-Laxemar, Sellafield, Dounreay and Cloud Hill sites. At Los Ratones and
Melechov sites late-stage mineralization is either absent or extremely scarce, and both the
quantity and fine crystal size of any late-stage fracture mineralization relevant to Quaternary
palaeohydrogeological investigations is difficult to work with. The results from the material
investigated during the PADAMOT studies indicate that the fracture fillings at these sites are
related to hydrothermal activity, and so do not have direct relevance as Quaternary indicators.
Neoformed calcite has not been found at these two sites at the present depth of the investigations.
Furthermore, the HCO3
- concentration in all the Los Ratones groundwaters is mainly controlled
by complex carbonate dissolution. The carbonate mineral saturation indices do not indicate
precipitation conditions, and this is consistent with the fact that neoformed calcite, ankerite or
dolomite have not been observed petrographically
A glass-ceramic derived from high TiO2-containing slag: Microstructural development and mechanical behavior
Salvage brachytherapy in combination with interstitial hyperthermia for locally recurrent prostate carcinoma following external beam radiation therapy: a prospective phase II study.
Optimal treatment for patients with only local prostate cancer recurrence after external beam radiation therapy (EBRT) failure remains unclear. Possible curative treatments are radical prostatectomy, cryosurgery, and brachytherapy. Several single institution series proved that high-dose-rate brachytherapy (HDRBT) and pulsed-dose-rate brachytherapy (PDRBT) are reasonable options for this group of patients with acceptable levels of genitourinary and gastrointestinal toxicity. A standard dose prescription and scheme have not been established yet, and the literature presents a wide range of fractionation protocols. Furthermore, hyperthermia has shown the potential to enhance the efficacy of re-irradiation. Consequently, a prospective trial is urgently needed to attain clear structured prospective data regarding the efficacy of salvage brachytherapy with adjuvant hyperthermia for locally recurrent prostate cancer. The purpose of this report is to introduce a new prospective phase II trial that would meet this need. The primary aim of this prospective phase II study combining Iridium-192 brachytherapy with interstitial hyperthermia (IHT) is to analyze toxicity of the combined treatment; a secondary aim is to define the efficacy (bNED, DFS, OS) of salvage brachytherapy. The dose prescribed to PTV will be 30 Gy in 3 fractions for HDRBT, and 60 Gy in 2 fractions for PDRBT. During IHT, the prostate will be heated to the range of 40-47°C for 60 minutes prior to brachytherapy dose delivery. The protocol plans for treatment of 77 patients
Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. II. Charge separation processes
A new approach to carry out molecular dynamics simulations of chemical reactions in solution using combined density functional theory/molecular mechanics potentials is presented. We focus our attention on the analysis of reactive trajectories, dynamic solvent effects and transmission coefficient rather than on the evaluation of free energy which is another important topic that will be examined elsewhere. In a previous paper we have described the generalities of this hybrid molecular dynamics method and it has been employed to investigate low energy barrier proton transfer process in water. The study of processes with activation energies larger than a few kT requires the use of specific techniques adapted to “rare events” simulations. We describe here a method that consists in the simulation of short trajectories starting from an equilibrated transition state in solution, the structure of which has been approximately established. This calculation is particularly efficient when carried out with parallel computers since the study of a reactive process is decomposed in a set of short time trajectories that are completely independent. The procedure is close to that used by other authors in the context of classical molecular dynamics but present the advantage of describing the chemical system with rigorous quantum mechanical calculations. It is illustrated through the study of the first reaction step in electrophilic bromination of ethylene in water. This elementary process is representative of many charge separation reactions for which static and dynamic solvent effects play a fundamental [email protected]
- …
