2,074 research outputs found
Arthropod Fauna Associated with Wild and Cultivated Cranberries in Wisconsin
The cranberry (Vaccinium macrocarpon Aiton) is an evergreen, trailing shrub native to North American peatlands. It is cultivated commercially in the US and Canada, with major production centers in Wisconsin, Massachusetts, New Jersey, Washington, Québec, and British Columbia. Despite the agricultural importance of cranberry in Wisconsin, relatively little is known of its arthropod associates, particularly the arachnid fauna. Here we report preliminary data on the insect and spider communities associated with wild and cultivated cranberries in Wisconsin. We then compare the insect and spider communities of wild cranberry systems to those of cultivated cranberries, indexed by region. Approximately 7,400 arthropods were curated and identified, spanning more than 100 families, across 11 orders. The vast majority of specimens and diversity derived from wild ecosystems. In both the wild and cultivated systems, the greatest numbers of families were found among the Diptera (midges, flies) and Hymenoptera (bees, ants, wasps), but numerically, the Hymenoptera and Araneae (spiders) were dominant. Within the spider fauna, 18 new county records, as well as a new Wisconsin state record (Linyphiidae: Ceratinopsis laticeps (Em.)), were documented. While more extensive sampling will be needed to better resolve arthropod biodiversity in North American cranberry systems, our findings represent baseline data on the breadth of arthropod diversity in the Upper Midwest, USA
Rates of species introduction to a remote oceanic island
The introduction of species to areas beyond the limits of their natural distributions has a major homogenizing influence, making previously distinct biotas more similar. The scale of introductions has frequently been commented on, but their rate and spatial pervasiveness have been less well quantified. Here, we report the findings of a detailed study of pterygote insect introductions to Gough Island, one of the most remote and supposedly pristine temperate oceanic islands, and estimate the rate at which introduced species have successfully established.
Out of 99 species recorded from Gough Island, 71 are established introductions, the highest proportion documented for any Southern Ocean island. Estimating a total of approximately 233 landings on Gough Island since first human landfall, this equates to one successful establishment for every three to four landings. Generalizations drawn from other areas suggest that this may be only one-tenth of the number of pterygote species that have arrived at the island, implying that most landings may lead to the arrival of at least one alien. These rates of introduction of new species are estimated to be two to three orders of magnitude greater than background levels for Gough Island, an increase comparable to that estimated for global species extinctions (many of which occur on islands) as a consequence of human activities
IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome
Expansion of the polyglutamine repeat within the protein Huntingtin (Htt) causes Huntington's disease, a neurodegenerative disease associated with aging and the accumulation of mutant Htt in diseased neurons. Understanding the mechanisms that influence Htt cellular degradation may target treatments designed to activate mutant Htt clearance pathways. We find that Htt is phosphorylated by the inflammatory kinase IKK, enhancing its normal clearance by the proteasome and lysosome. Phosphorylation of Htt regulates additional post-translational modifications, including Htt ubiquitination, SUMOylation, and acetylation, and increases Htt nuclear localization, cleavage, and clearance mediated by lysosomal-associated membrane protein 2A and Hsc70. We propose that IKK activates mutant Htt clearance until an age-related loss of proteasome/lysosome function promotes accumulation of toxic post-translationally modified mutant Htt. Thus, IKK activation may modulate mutant Htt neurotoxicity depending on the cell's ability to degrade the modified species
Replica Symmetry Breaking in Attractor Neural Network Models
The phenomenon of replica symmetry breaking is investigated for the retrieval
phases of Hopfield-type network models. The basic calculation is done for the
generalized version of the standard model introduced by Horner [1] and by
Perez-Vicente and Amit [2] which can exhibit low mean levels of neural
activity. For a mean activity the Hopfield model is recovered. In
this case, surprisingly enough, we cannot confirm the well known one step
replica symmetry breaking (1RSB) result for the storage capacity which was
presented by Crisanti, Amit and Gutfreund [3] (\alpha_c^{\hbox{\mf
1RSB}}\simeq 0.144). Rather, we find that 1RSB- and 2RSB-Ans\"atze yield only
slightly increased capacities as compared to the replica symmetric value
(\alpha_c^{\hbox{\mf 1RSB}}\simeq 0.138\,186 and \alpha_c^{\hbox{\mf
2RSB}}\simeq 0.138\,187 compared to \alpha_c^{\hbox{\mf RS}}\simeq
0.137\,905), significantly smaller also than the value \alpha_c^{\hbox{\mf
sim}} = 0.145\pm 0.009 reported from simulation studies. These values still
lie within the recently discovered reentrant phase [4]. We conjecture that in
the infinite Parisi-scheme the reentrant behaviour disappears as is the case in
the SK-spin-glass model (Parisi--Toulouse-hypothesis). The same qualitative
results are obtained in the low activity range.Comment: Latex file, 20 pages, 8 Figures available from the authors upon
request, HD-TVP-94-
Glassy Vortex State in a Two-Dimensional Disordered XY-Model
The two-dimensional XY-model with random phase-shifts on bonds is studied.
The analysis is based on a renormalization group for the replicated system. The
model is shown to have an ordered phase with quasi long-range order. This
ordered phase consists of a glass-like region at lower temperatures and of a
non-glassy region at higher temperatures. The transition from the disordered
phase into the ordered phase is not reentrant and is of a new universality
class at zero temperature. In contrast to previous approaches the disorder
strength is found to be renormalized to larger values. Several correlation
functions are calculated for the ordered phase. They allow to identify not only
the transition into the glassy phase but also an additional crossover line,
where the disconnected vortex correlation changes its behavior on large scales
non-analytically. The renormalization group approach yields the glassy features
without a breaking of replica symmetry.Comment: latex 12 pages with 3 figures, using epsf.sty and multicol.st
Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project
Pollinating insects form a key component of European biodiversity, and provide a vital ecosystem service to crops and wild plants. There is growing evidence of declines in both wild and domesticated pollinators, and parallel declines in plants relying upon them. The STEP project (Status and Trends of European Pollinators, 2010-2015, www.stepproject.net) is documenting critical elements in the nature and extent of these declines, examining key functional traits associated with pollination deficits, and developing a Red List for some European pollinator groups. Together these activities are laying the groundwork for future pollinator monitoring programmes. STEP is also assessing the relative importance of potential drivers of pollinator declines, including climate change, habitat loss and fragmentation, agrochemicals, pathogens, alien species, light pollution, and their interactions. We are measuring the ecological and economic impacts of declining pollinator services and floral resources, including effects on wild plant populations, crop production and human nutrition. STEP is reviewing existing and potential mitigation options, and providing novel tests of their effectiveness across Europe. Our work is building upon existing and newly developed datasets and models, complemented by spatially-replicated campaigns of field research to fill gaps in current knowledge. Findings are being integrated into a policy-relevant framework to create evidence-based decision support tools. STEP is establishing communication links to a wide range of stakeholders across Europe and beyond, including policy makers, beekeepers, farmers, academics and the general public. Taken together, the STEP research programme aims to improve our understanding of the nature, causes, consequences and potential mitigation of declines in pollination services at local, national, continental and global scales
Quantum Effects in Neural Networks
We develop the statistical mechanics of the Hopfield model in a transverse
field to investigate how quantum fluctuations affect the macroscopic behavior
of neural networks. When the number of embedded patterns is finite, the Trotter
decomposition reduces the problem to that of a random Ising model. It turns out
that the effects of quantum fluctuations on macroscopic variables play the same
roles as those of thermal fluctuations. For an extensive number of embedded
patterns, we apply the replica method to the Trotter-decomposed system. The
result is summarized as a ground-state phase diagram drawn in terms of the
number of patterns per site, , and the strength of the transverse
field, . The phase diagram coincides very accurately with that of the
conventional classical Hopfield model if we replace the temperature T in the
latter model by . Quantum fluctuations are thus concluded to be quite
similar to thermal fluctuations in determination of the macroscopic behavior of
the present model.Comment: 34 pages, LaTeX, 9 PS figures, uses jpsj.st
Pharmacological levels of withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells
Withaferin A (WA) isolated from Withania somnifera (Ashwagandha) has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN) did not exert any of the described effects at comparable concentrations. Pathway enrichment analysis revealed that WA targets specific cancer processes related to cell death, cell cycle and proliferation, which could be functionally validated by flow cytometry and real-time cell proliferation assays. WA also strongly decreased MDA-MB-231 invasion as determined by single-cell collagen invasion assay. This was further supported by decreased gene expression of extracellular matrix-degrading proteases (uPA, PLAT, ADAM8), cell adhesion molecules (integrins, laminins), pro-inflammatory mediators of the metastasis-promoting tumor microenvironment (TNFSF12, IL6, ANGPTL2, CSF1R) and concomitant increased expression of the validated breast cancer metastasis suppressor gene (BRMS1). In line with the transcriptional changes, nanomolar concentrations of WA significantly decreased protein levels and corresponding activity of uPA in MDA-MB-231 cell supernatant, further supporting its anti-metastatic properties. Finally, hierarchical clustering analysis of 84 chromatin writer-reader-eraser enzymes revealed that WA treatment of invasive mesenchymal MDA-MB-231 cells reprogrammed their transcription levels more similarly towards the pattern observed in non-invasive MCF-7 cells. In conclusion, taking into account that sub-cytotoxic concentrations of WA target multiple metastatic effectors in therapy-resistant triple negative breast cancer, WA-based therapeutic strategies targeting the uPA pathway hold promise for further (pre)clinical development to defeat aggressive metastatic breast cancer
Honey bee foraging distance depends on month and forage type
To investigate the distances at which honey bee foragers collect nectar and pollen, we analysed 5,484 decoded waggle dances made to natural forage sites to determine monthly foraging distance for each forage type. Firstly, we found significantly fewer overall dances made for pollen (16.8 %) than for non-pollen, presumably nectar (83.2 %; P < 2.2 × 10−23). When we analysed distance against month and forage type, there was a significant interaction between the two factors, which demonstrates that in some months, one forage type is collected at farther distances, but this would reverse in other months. Overall, these data suggest that distance, as a proxy for forage availability, is not significantly and consistently driven by need for one type of forage over the other
Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses
The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
- …
