222 research outputs found

    Dense Cloud Formation and Star Formation in a Barred Galaxy

    Get PDF
    We investigate the properties of massive, dense clouds formed in a barred galaxy and their possible relation to star formation, performing a two-dimensional hydrodynamical simulation with the gravitational potential obtained from the 2Mass data from the barred spiral galaxy, M83. Since the environment for cloud formation and evolution in the bar region is expected to be different from that in the spiral arm region, barred galaxies are a good target to study the environmental effects on cloud formation and the subsequent star formation. Our simulation uses for an initial 80 Myr an isothermal flow of non-self gravitating gas in the barred potential, then including radiative cooling, heating and self-gravitation of the gas for the next 40 Myr, during which dense clumps are formed. We identify many cold, dense gas clumps for which the mass is more than 104M⊙10^4M_{\odot} (a value corresponding to the molecular clouds) and study the physical properties of these clumps. The relation of the velocity dispersion of the identified clump's internal motion with the clump size is similar to that observed in the molecular clouds of our Galaxy. We find that the virial parameters for clumps in the bar region are larger than that in the spiral arm region. From our numerical results, we estimate star formation in the bar and spiral arm regions by applying the simple model of Krumholtz and McKee (2005). The mean relation between star formation rate and gas surface density agrees well with the observed Kennicutt-Schmidt relation. The SFE in the bar region is ∌60\sim 60 % of the spiral arm region. This trend is consistent with observations of barred galaxies.Comment: 9 pages, 16 figures. Accepted for publication in the MNRA

    The Structure, Kinematics and Physical Properties of the Molecular Gas in the Starburst Nucleus of NGC 253

    Full text link
    We present 5.2" x 2.6" resolution interferometry of CO J=1-0 emission from the starburst galaxy NGC 253. The high spatial resolution of these new data, in combination with recent high resolution maps of 13CO, HCN and near-infrared emission, allow us for the first time to link unambiguously the gas properties in the central starburst of NGC 253 with its bar dynamics. We confirm that the star formation results from bar-driven gas flows as seen in "twin peaks" galaxies. Two distinct kinematic features are evident from the CO map and position-velocity diagram: a group of clouds rotating as a solid body about the kinematic center of the galaxy, and a more extended gas component associated with the near-infrared bar. We model the line intensities of CO, HCN and 13CO to infer the physical conditions of the gas in the nucleus of NGC 253. The results indicate increased volume densities around the radio nucleus in a twin-peaks morphology. Compared with the CO kinematics, the gas densities appear highest near the radius of a likely inner Linblad resonance, and slightly lead the bar minor axis. This result is similar to observations of the face-on, twin-peaks galaxy NGC 6951, and is consistent with models of starburst generation due to gas inflow along a bar.Comment: To appear in the ApJ, 28 pages, 12 figure file

    Intermittent maser flare around the high mass young stellar object G353.273+0.641 I: data & overview

    Full text link
    We have performed VLBI and single-dish monitoring of 22 GHz H2_{2}O maser emission from the high mass young stellar object G353.273+0.641 with VERA (VLBI Exploration of Radio Astrometry) and Tomakamai 11-m radio telescope. Two maser flares have been detected, separated almost two years. Frequent VLBI monitoring has revealed that these flare activities have been accompanied by structural change of the prominent shock front traced by H2O maser alignments. We have detected only blue-shifted emissions and all maser features have been distributed within very small area of 200 ×\times 200 au2^{2} in spite of wide velocity range (> 100 km s−1^{-1}). The light curve shows notably intermittent variation and suggests that the H2_{2}O masers in G353.273+0.641 are excited by episodic radio jet. The time-scale of \sim2 yr and characteristic velocity of \sim500 km s−1^{-1} also support this interpretation. Two isolated velocity components of C50 (-53 \pm 7 km s−1^{-1}) and C70 (-73 \pm 7 km s−1^{-1}) have shown synchronised linear acceleration of the flux weighted V_{\rmn{LSR}} values (\sim-5 km s−1^{-1} yr−1^{-1}) during the flare phase. This can be converted to the lower-limit momentum rate of 1.1 \times 10−3^{-3} M_{\sun} km s−1^{-1} yr−1^{-1}. Maser properties are quite similar to that of IRAS 20126+4104 especially. This corroborates the previous suggestion that G353.273+0.641 is a candidate of high mass protostellar object. The possible pole-on geometry of disc-jet system can be suitable for direct imaging of the accretion disc in this case.Comment: 13 pages, 5 figures accepted for publication in MNRA

    LABOCA observations of nearby, active galaxies

    Full text link
    We present large scale 870 micron maps of the nearby starburst galaxies NGC253, NGC4945 and the nearest giant elliptical radio galaxy Centaurus A (NGC 5128) obtained with the newly commissioned Large Apex Bolometer Camera (LABOCA) operated at the APEX telescope. Our continuum images reveal for the first time the distribution of cold dust at a angular resolution of 20" across the entire optical disks of NGC253 and NGC4945 out to a radial distance of 10' (7.5 kpc). In NGC5128 our LABOCA image also shows, for the first time at submillimeter wavelengths, the synchrotron emission associated with the radio jet and the inner radio lobes. From an analysis of the 870 micron emission in conjunction with ISO-LWS, IRAS and long wavelengths radio data we find temperatures for the cold dust in the disks of all three galaxies of 17-20 K, comparable to the dust temperatures in the disk of the Milky Way. The total gas mass in the three galaxies is determined to be 2.1, 4.2 and 2.8 x 10^9 solar masses for NGC253, NGC4945 and NGC5128, respectively. A detailed comparison between the gas masses derived from the dust continuum and the integrated CO(1-0) intensity in NGC253 suggests that changes of the CO luminosity to molecular mass conversion factor are mainly driven by a metallicity gradient and only to a lesser degree by variations of the CO excitation. An analysis of the synchrotron spectrum in the northern radio lobe of NGC5128 shows that the synchrotron emission from radio to the ultraviolet wavelengths is well described by a broken power law and that the break frequency is a function of the distance from the radio core as expected for aging electrons. We derive an outflow speed of ~0.5c at a distance of 2.6kpc from the center, consistent with the speed derived in the vicinity of the nucleus.Comment: 12 pages, 11 figures. Accepted for publication in A&

    Nuclear Bar Catalyzed Star Formation: 13^CO, C18^O and Molecular Gas Properties in the Nucleus of Maffei 2

    Get PDF
    (Abridged) We present resolution maps of CO, its isotopologues, and HCN from in the center of Maffei 2. The J=1-0 rotational lines of 12^CO, 13^CO, C18^O and HCN, and the J=2-1 lines of 13^CO and C18^O were observed with the OVRO and BIMA arrays. The 2-1/1-0 line ratios of the isotopologues constrain the bulk of the molecular gas to originate in low excitation, subthermal gas. From LVG modeling, we infer that the central GMCs have n(H_2) ~10^2.75 cm^-3 and T_k ~ 30 K. Continuum emission at 3.4 mm, 2.7 mm and 1.4 mm was mapped to determine the distribution and amount of HII regions and dust. Column densities derived from C18^O and 1.4 mm dust continuum fluxes indicate the CO conversion factor in the center of Maffei 2 is lower than Galactic by factors of ~2-4. Gas morphology and the clear ``parallelogram'' in the Position-Velocity diagram shows that molecular gas orbits within the potential of a nuclear (~220 pc) bar. The nuclear bar is distinct from the bar that governs the large scale morphology of Maffei 2. Giant molecular clouds in the nucleus are nonspherical and have large linewidths. Dense gas and star formation are concentrated at the sites of the x_1-x_2 orbit intersections of the nuclear bar, suggesting that the starburst is dynamically triggered.Comment: 50 pages, 14 figures, accepted for publication in Ap

    Modeling molecular crystals formed by spin-active metal complexes by atom-atom potentials

    Full text link
    We apply the atom-atom potentials to molecular crystals of iron (II) complexes with bulky organic ligands. The crystals under study are formed by low-spin or high-spin molecules of Fe(phen)2_{2}(NCS)2_{2} (phen = 1,10-phenanthroline), Fe(btz)2_{2}(NCS)2_{2} (btz = 5,5â€Č^{\prime },6,6â€Č^{\prime}-tetrahydro-4\textit{H},4â€Č^{\prime}\textit{H}-2,2â€Č^{\prime }-bi-1,3-thiazine), and Fe(bpz)2_{2}(bipy) (bpz = dihydrobis(1-pyrazolil)borate, and bipy = 2,2â€Č^{\prime}-bipyridine). All molecular geometries are taken from the X-ray experimental data and assumed to be frozen. The unit cell dimensions and angles, positions of the centers of masses of molecules, and the orientations of molecules corresponding to the minimum energy at 1 atm and 1 GPa are calculated. The optimized crystal structures are in a good agreement with the experimental data. Sources of the residual discrepancies between the calculated and experimental structures are discussed. The intermolecular contributions to the enthalpy of the spin transitions are found to be comparable with its total experimental values. It demonstrates that the method of atom-atom potentials is very useful for modeling organometalic crystals undergoing the spin transitions

    Microstructure and kinematics of H2O masers in the massive star forming region IRAS 06061+2151

    Full text link
    We have made multi-epoch VLBI observations of H2O maser emission in the massive star forming region IRAS 06061+2151 with the Japanese VLBI network (JVN) from 2005 May to 2007 October. The detected maser features are distributed within an 1\arcsec×\times1\arcsec (2000 au×\times2000 au at the source position) around the ultra-compact H {\small\bf II} region seen in radio continuum emission. Their bipolar morphology and expanding motion traced through their relative proper motions indicate that they are excited by an energetic bipolar outflow. Our three-dimensional model fitting has shown that the maser kinematical structure in IRAS 06061+2151 is able to be explained by a biconical outflow with a large opening angle (>> 50\degr). The position angle of the flow major axis coincides very well with that of the large scale jet seen in 2.1\:\mu\rmn{m} hydrogen emission. This maser geometry indicates the existence of dual structures composed of a collimated jet and a less collimated massive molecular flow. We have also detected a large velocity gradient in the southern maser group. This can be explained by a very small (on a scale of several tens of au) and clumpy (the density contrast by an order of magnitude or more) structure of the parental cloud. Such a structure may be formed by strong instability of shock front or splitting of high density core.Comment: 14 pages, 6 figures accepted for publication in MNRA
    • 

    corecore