591 research outputs found
New and renewable energy and environmental engineering
There is an acute scarcity of potable water in many parts of the world, and especially in most of the Middle East region. Important advances have been made in desalination technology but its wide application is restricted by relatively high capital and input energy costs, even when solar energy is used. Until recently, flat-plate solar collectors have usually been employed to distill water in compact desalination systems. Currently, it is possible to replace these collectors by the more advanced evacuated tube collectors, which are now available on the market at a similar price. The research which is concerned with the development of a novel small scale solar water desalination technology, consists of experimental and theoretical investigations of the operation of a multi stage solar still desalination system coupled with a heat pipe evacuated tube solar collector with an aperture area of about 1.7 m(^2). The multi stage still was tested to recover latent heat from the evaporation and condensation processes in each of its four stages. A number of experimental tests were carried out using a laboratory rig to investigate its water production capacity. Solar radiation (insolation) during a mid-summer day in the Middle East region was simulated by an array of 110 halogen flood lights. Computational Fluid Dynamics (CFD) modeling of the evaporation and condensation processes in one of the still's stages was conducted using FLUENT 6.2 software. The simulation results demonstrate the importance of the various parameters affecting the total production rate of the solar still and provide detailed information on the temperature distribution and condensate formation inside the solar still. However, it was found that the CFD technique at this stage does not provide accurate quantitative predictions and results obtained can be used only for qualitative analysis. Hence, the use of a lumped parameter mathematical model was preferred for analysis and design purpose. A lumped parameter model has been developed to describe the system's operation. It consists of a system of ordinary differential equations of energy and mass conservation written for each stage of the still. A MATLAB computer program was written to solve the system of governing equations to simulate the evaporation and condensation processes and the experimental results were used to validate numerical predictions. The experimental and theoretical values for the total daily distillate output were found to be closely correlated. The test results demonstrate that the system produces about 9 kg of clean water per day and has a distillation efficiency of 90%. The overall efficiency is 33% due to the presence of heat losses in the system. However, this level of efficiency is greater of that for conventional solar stills. Following the experimental calibration of the lumped parameter model, this was used for determination of rational design parameters of the still and it was demonstrated that the performance of the system could be considerably improved to produce 11 kg/m(^2) of water per day if the number of stages and evaporation area were 4 and 1 m(^2), respectively. A water quality analysis was performed for the distilled water and the levels of total dissolved solids, electrical conductivity and pH were well within the range defined by the World Health Organization guidelines for drinking water. An economic study was also conducted for the system and it was shown that the distilled water costs of 0.016 US$/litre with a payback period of 6 months in the Middle East region conditions. This research demonstrates, empirically and theoretically, the potential role in the field of solar desalination of the multistage solar still coupled to the evacuated tube solar collector. Not only is this system a promising new technology but it could prove to be particularly appropriate in remote and rural areas. Simultaneously this system also uses a completely clean energy source and contributes to tackling environmental pollution, global carbon emissions and climate change problems
The Symptom Burden and Quality of Life in Cancer Patients in the Gaza Strip, Palestine: A Cross-Sectional Study
Objectives
Cancer is the second leading cause of death in the Gaza Strip, Palestine, but there is an absence of evidence systematically assessing symptom burden and quality of life (QoL) using validated tools. Our objective was to assess associations between socio-demographic and disease-related characteristics, symptom burden and QoL in a sample of cancer patients accessing outpatient services in the Gaza Strip.
Design
A cross-sectional, descriptive survey using interviews and medical record review involving patients with cancer accessing oncology outpatient services at Al Rantisi Hospital and European Gaza Hospital (EGH) in the Gaza Strip was employed. Socio-demographic and disease-related data, the Lebanese version of the Memorial Symptom Assessment Scale (MSAS-Leb), and the Arabic version of the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-C30 (EORTC QLQ-C30) were collected. Multiple linear regression was used to judge the relative influence of determinants of QoL.
Results
Of 414 cancer patients approached, 385 patients consented to participation. The majority were women (64.7%) with a mean age of 52 years (SD = 16.7). Common cancer diagnoses were breast (32.2%), haematological (17.9%) and colorectal (9.1%). The median number of symptoms was 10 (IQR 1.5–18.5). Mean overall QoL was 70.5 (SD 19.9) with common physical and psychological symptoms identified. A higher burden of symptoms was associated with marital status, education and income. Limited access to both opioids and psychological support were reported.
Conclusions
A high symptom burden was identified in outpatients with cancer. Increasing provision and access to supportive care for physical and psychological symptoms should be prioritised alongside exploring routine assessment of symptom burden and QoL
Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension
Pulmonary arterial hypertension (PAH) is a severe disorder of lung vasculature that causes right heart failure. Homeostatic effects of flow-activated transcription factor Krüppel-like factor 2 (KLF2) are compromised in PAH. Here we show that KLF2-induced exosomal microRNAs, miR-181a-5p and miR-324-5p act together to attenuate pulmonary vascular remodeling and that their actions are mediated by Notch4 and ETS1 and other key regulators of vascular homeostasis. Expressions of KLF2, miR-181a-5p and miR-324-5p are reduced, while levels of their target genes are elevated in pre-clinical PAH, idiopathic PAH and heritable PAH with missense p.H288Y KLF2 mutation. Therapeutic supplementation of miR-181a-5p and miR-324-5p reduces proliferative and angiogenic responses in patient-derived cells and attenuates disease progression in PAH mice. This study shows that reduced KLF2 signaling is a common feature of human PAH and highlights the potential therapeutic role of KLF2-regulated exosomal miRNAs in PAH and other diseases associated with vascular remodelling
Light source selection for a solar simulator for thermal applications: A review
Solar simulators are used to test components and systems under controlled and repeatable conditions, often in locations with unsuitable insolation for outdoor testing. The growth in renewable energy generation has led to an increased need to develop, manufacture and test components and subsystems for solar thermal, photovoltaic (PV), and concentrating optics for both thermal and electrical solar applications. At the heart of any solar simulator is the light source itself. This paper reviews the light sources available for both low and high-flux solar simulators used for thermal applications. Criteria considered include a comparison of the lamp wavelength spectrum with the solar spectrum, lamp intensity, cost, stability, durability, and any hazards associated with use. Four main lamp types are discussed in detail, namely argon arc, the metal halide, tungsten halogen lamp, and xenon arc lamps. In addition to describing the characteristics of each lamp type, the popularity of usage of each type over time is also indicated. This is followed by guidelines for selecting a suitable lamp, depending on the requirements of the user and the criteria applied for selection. The appropriate international standards are also addressed and discussed. The review shows that metal halide and xenon arc lamps predominate, since both provide a good spectral match to the solar output. The xenon lamp provides a more intense and stable output, but has the disadvantages of being a high-pressure component, requiring infrared filtering, and the need of a more complex and expensive power supply. As a result, many new solar simulators prefer metal halide lamps
Systematic study of flow vector fluctuations in √SNN=5.02 TeV Pb-Pb collisions
Measurements of the pT-dependent flow vector fluctuations in Pb-Pb collisions at sNN=5.02TeV using azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [ALICE Collaboration, Phys. Rev. C 107, L051901 (2023)2469-998510.1103/PhysRevC.107.L051901] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the pT-dependent flow vector fluctuations at sNN=5.02TeV with two-particle correlations. Significant pT-dependent fluctuations of the V - 2 flow vector in Pb-Pb collisions are found across different centrality ranges, with the largest fluctuations of up to ∼15% being present in the 5% most central collisions. In parallel, no evidence of significant pT-dependent fluctuations of V - 3 or V - 4 is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than 5σ significance in central collisions. These observations in Pb-Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high pT, which might be biased by pT-dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be reexamined to improve our understanding of initial conditions, quark-gluon plasma properties, and the dynamic evolution of the created system
Measurements of inclusive J/ψ production at midrapidity and forward rapidity in Pb-Pb collisions at √sNN=5.02 TeV
The measurements of the inclusive J/ψ yield at midrapidity (|y|<0.9) and forward rapidity (2.5 < 4) in Pb–Pb collisions at sNN=5.02 TeV with the ALICE detector at the LHC are reported. The inclusive J/ψ production yields and nuclear modification factors, RAA, are measured as a function of the collision centrality, J/ψ transverse momentum (pT), and rapidity. The J/ψ average transverse momentum and squared transverse momentum (〈pT〉 and 〈pT2〉) are evaluated as a function of the centrality at midrapidity. Compared to the previous ALICE publications, here the entire Pb–Pb collisions dataset collected during the LHC Run 2 is used, which improves the precision of the measurements and extends the pT coverage. The pT-integrated RAA shows a hint of an increasing trend towards unity from semicentral to central collisions at midrapidity, while it is flat at forward rapidity. The pT-differential RAA shows a strong suppression at high pT with less suppression at low pT where it reaches a larger value at midrapidity compared to forward rapidity. The ratio of the pT-integrated yields of J/ψ to those of D0 mesons is reported for the first time for the central and semicentral event classes at midrapidity. Model calculations implementing charmonium production via the coalescence of charm quarks and antiquarks during the fireball evolution (transport models) or in a statistical approach with thermal weights are in good agreement with the data at low pT. At higher pT, the data are well described by transport models and a model based on energy loss in the strongly-interacting medium produced in nuclear collisions at the LHC
Photoproduction of K+ K- Pairs in Ultraperipheral Collisions
K+K- pairs may be produced in photonuclear collisions, either from the decays of photoproduced φ(1020) mesons or directly as nonresonant K+K- pairs. Measurements of K+K- photoproduction probe the couplings between the φ(1020) and charged kaons with photons and nuclear targets. The kaon-proton scattering occurs at energies far above those available elsewhere. We present the first measurement of coherent photoproduction of K+K- pairs on lead ions in ultraperipheral collisions using the ALICE detector, including the first investigation of direct K+K- production. There is significant K+K- production at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass range 1.1<1.4 GeV/c2 above the φ(1020) resonance, for rapidity |yKK|<0.8 and pT,KK<0.1 GeV/c, the measured coherent photoproduction cross section is dσ/dy=3.37±0.61(stat)±0.15(syst) mb. The center-of-mass energy per nucleon of the photon-nucleus (Pb) system WγPb,n ranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected for φ(1020) photoproduction alone. The mass spectrum is fit to a cocktail consisting of φ(1020) decays, direct K+K- photoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for direct K+K- photoproduction are presented
Observation of abnormal suppression of f0(980) production in p-Pb collisions at √sNN=5.02 TeV
The dependence of f0(980) production on the final-state charged-particle multiplicity in p–Pb collisions at sNN=5.02 TeV is reported. The production of f0(980) is measured with the ALICE detector via the f0(980)→π+π− decay channel in a midrapidity region of −0.5<0. Particle yield ratios of f0(980) to π and K⁎(892)0 are found to be decreasing with increasing charged-particle multiplicity. The magnitude of the suppression of the f0(980)/π and f0(980)/K⁎(892)0 yield ratios is found to be dependent on the transverse momentum pT, suggesting different mechanisms responsible for the measured effects. Furthermore, the nuclear modification factor QpPb of f0(980) is measured in various multiplicity ranges. The QpPb shows a strong suppression of the f0(980) production in the pT region up to about 4 GeV/c. The results on the particle yield ratios and QpPb for f0(980) may help to understand the late hadronic phase in p–Pb collisions and the nature of the internal structure of f0(980) particle
- …