76 research outputs found

    Combination Therapy With Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors in Older Patients With Type 2 Diabetes: A Real-World Evidence Study

    Get PDF
    Objectives: Scientific literature about the combination of glucagon-like peptide-1 receptor agonists (GLP1ra) and sodium-glucose cotransporter 2 (SGLT2) inhibitors in older patients is scarce. We sought to assess the real-world efficacy and safety of SGLT2 inhibitors and GLP-1ra combination therapy in older patients (>65 years of age). Methods: This was an observational, prospective, multicenter study based on clinical practice. Patients were stratified according to tertiles of baseline glycated hemoglobin (A1C) levels and to treatment schedule. Results: We included 113 patients (65.5% men, mean age 70.4±8.8 years). The body mass index was 36.5 (±6.6) kg/m2. The baseline A1C level was 8.0% (±1.2%). At the 6-month follow up, we found a significant reduction in A1C levels (–1.1%; p<0.0001), body mass index (–2.1 kg/m2; p<0.00003) and systolic blood pressure (–13 mmHg; p<0.000005). Patients who had the highest baseline A1C levels (≥8.4%) showed greater improvement in A1C levels (p<0.0001), weight (p<0.0001) and quality-of-life scores (p<0.0001). The greatest reduction in A1C levels and weight was seen in patients who started both drugs simultaneously (p<0.0001). The second greatest reduction was seen when GLP-1ra was added to previous treatment with an SGLT2i (p<0.0001). Also of note was a decrease in systolic blood pressure in patients for whom an SGLT2i was added to previous GLP-1ra treatment (p<0.0001). Of the patients, 34.3% achieved the combined endpoint of A1C levels <7% and weight loss ≥5% without hypoglycemia. Conclusions: This study’s findings provide evidence of clinically meaningful reductions in A1C level, body weight and systolic blood pressure in older patients with type 2 diabetes who are taking combined regimens. The dropout and hypoglycemia rates were minimal, and treatment was tolerated well

    Early biomarkers of diabetic kidney disease. A focus on albuminuria and a new combination of antidiabetic agents

    Get PDF
    Aims: We aimed to determine the efficacy and safety of sodium-glucose cotransporter type 2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists to prevent worsening urinary albumin-to-creatinine ratio as an early biomarker of diabetes kidney disease. Methods: A total of 178 patients with type 2 diabetes and obesity received combination treatment with SGLT2i added to GLP1ra (n = 76), GLP1ra added to SGLT2i (n = 50) or GLP1ra plus SGLT2i from start (n = 52), according to investigators´ best clinical judgement. Major outcomes assessed at 26 weeks were changes in urine albumintocreatinine-ratio (UACR), estimated glomerular filtration rate (eGFR), glycated haemoglobin, body weight and systolic blood pressure. Results: All patients (58.6% men, mean age 61.9 ± 10.0 years) completed the study. Baseline HbA1c, weight and eGFR levels were 8.2 ± 0.9%, 109.9 ± 19 kg and 83.3 ± 19.6 mL/min/m2 , respectively. At 26 weeks, we found significant reductions in HbA1c (1.16%), weight (5.17 kg) and systolic blood pressure (8.13 mmHg). The reduction in UACR was 15.14 mg/g (95% CI 8.50-22.4) (-24.6 ± 64.7%), which was greatest in the group of patients with SGLT2i added on to GLP1ra therapy (116.7 mg/g; 95% CI: 54-296.5 mg/g; P < .001. Patients with urinary albumin-to-creatinine ratio ≥30 mg/g, showed a higher declines (63.18 mg/g [95% CI 44.5-104.99]) (-56 ± 65.9%). The greatest reduction in urinary albumin-to-creatinine ratio was obtained when SGLT2i was added to GLP1ra (116.7 mg/g). The eGFR did not significantly change along the study period. Conclusion: Our results show the beneficial effect of GLP1ra and SGLT2i combination therapy on early biomarkers of diabetes kidney disease such as albuminuria and in other significant outcomes for diabetes control

    Informe sobre el bioseguiment amb líquens epífits per l’avaluació de la qualitat de l’aire a la ciutat de Barcelona

    Full text link
    Annex I a. Plànols dels ParcsAnnex I b. Plànols dels CementirisAnnex II. Fitxes i taules d'espèciesAnnex III a. Mapa Diversitat Liquènica VDL – ParcsAnnex III b. Mapa Diversitat Liquènica VDL – Cementiri

    Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array

    Get PDF
    NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and ''blob'' regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent energy resolution of 1.82% FWHM at 511 keV has been measured (a value which extrapolates to 0.83% at the xenon Qββ)

    Present Status and Future Perspectives of the NEXT Experiment

    Get PDF
    NEXT is an experiment dedicated to neutrinoless double beta decay searches in xenon. The detector is a TPC, holding 100 kg of high-pressure xenon enriched in the 136Xe isotope. It is under construction in the Laboratorio Subterráneo de Canfranc in Spain, and it will begin operations in 2015. The NEXT detector concept provides an energy resolutionbetter than 1% FWHM and a topological signal that can be used to reduce the background. Furthermore, the NEXT technology can be extrapolated to a 1 ton-scale experiment

    Rowing against the wind: how do times of austerity shape academic entrepreneurship in unfriendly environments?

    Full text link
    [EN] Academic spin-offs (ASOs) help universities transfer knowledge or technology through business projects developed by academic staff. This investigation aims at analyzing the critical factors for spin-off creation at universities operating in crisis-raven, entrepreneurship-unfriendly environments. Such factors revolve around four types of resources: environmental, institutional, organizational, and personal. Focusing on a Southern European context, as an example of an unfriendly environment affected by economic crisis, an entrepreneurial university (the Technical University of Valencia in Spain, UPV) is our research setting. Through a case study approach, we examine the potential of UPV as a springboard for ASOs. Our results show an adverse local environment, a rather favorable influence of institutional and organizational drivers, and a mixed role of personal factors. Our findings illustrate that UPV consistently supports spin-off creation due to a greater (rather positive) reflexivity from its institutional, organizational and personal resources than the (negative) imprinting of the unfriendly environment. This helps counter-balance the structural unfriendliness for academic entrepreneurship, and trigger a crisis-led risk-taking attitude by academic staff. Hence, UPV should continue with its current strategy of supporting academic entrepreneurship, and might transfer best practices to other universities also affected by unfavorable environmental conditions. Generally speaking, we would advise universities facing adverse circumstances to develop rules and mechanisms for academic entrepreneurship, carefully revise and improve malfunctions, and become involved throughout the whole process of spin-off development. All in all, our study advances understanding of how the different drivers for ASO creation can be revamped by universities located in unfriendly environments, having in mind the key role that universities play in fostering social and economic development through academic entrepreneurship in such environments.The authors would like to thank the Universitat Politecnica de Valencia (grant PAID-06-12-0916), and the Spanish Ministry of Economy and Competitiveness (grant ECO2011-29863), for their financial support for this research.Seguí-Mas, E.; Oltra, V.; Tormo-Carbó, G.; Sarrión Viñes, F. (2017). Rowing against the wind: how do times of austerity shape academic entrepreneurship in unfriendly environments?. International Entrepreneurship and Management Journal. 1-42. doi:10.1007/s11365-017-0478-zS142Acs, Z. J., Audretsch, D. B., & Lehmann, E. E. (2013). The knowledge spillover theory of entrepreneurship. Small Business Economics, 41, 757–774.Alemany, L. (2011). Libro blanco de la iniciativa emprendedora en España. Resource document. ISEAD. http://idl.isead.edu.es:8080/jspui/bitstream/123456789/859/1/658ALElib.pdf . Accessed 31 October 2015.Algieri, B., Aquino, A., & Succurro, M. (2013). Technology transfer offices and academic spin-off creation: the case of Italy. Journal of Technology Transfer, 38(4), 382–400.ARWU (2017). Academic Ranking of World Universities 2017. Resource document. http://www.shanghairanking.com/ARWU2017.html . Accesed 15 August 2017.Ashcroft, B., Holden, D., & Low, K. (2004). Potential entrepreneurs and the self employment choice decision. In Strathclyde Discussion papers in Economics, 4–16. Glasglow: University of Strathclyde.Autio, E., & Kauranen, I. (1994). Technologist-entrepreneurs versus nonentrepreneurial technologists: Analysis of motivational triggering factors. Entrepreneurship & Regional Development, 6, 315–328.Autio, E., Kenney, M., Mustar, P., Siegel, D., & Wright, M. (2014). Entrepreneurial innovation: The importance of context. Research Policy, 43, 1097–1108.Bonnacorsi, A., Colombo, M. G., Guerini, M., & Rossi-Lamastra, C. (2013). University specialization and new firm creation across industries. Small Business Economics, 41, 837–863.Bruneel, J., Van de Velde, E., & Clarysse, B. (2013). Impact of the type of corporate spin-off on growth. Entrepreneurship Theory and Practice, 37, 943–959.CampusHabitat5U (2017). International Campus of Excellence. Resource document. UPV. http://campushabitat5u.es/?lang=en . Accessed 5 October 2017.Chiesa, V., & Piccaluga, A. (2000). Exploitation and diffusion of public research: The chase of academic spin-offs companies in Italy. R&D Management, 30, 329–339.Clark, B. R. (1998). Creating entrepreneurial universities: Organizational pathways of transformation. New York: IAU Press.Clarysse, B., & Moray, N. (2004). A process study of entrepreneurial team formation: The case of research-based spin-off. Journal of Business Venturing, 19, 55–79.Cohen, M., Nelson, R., & Walsh, J. (2002). Links and impacts: The influence of public research on industrial R&D. Management Science, 48, 1–23.Creswell, J.W. & Clark, V. (2011). Designing and Conducting Mixed Methods Research. SAGE Publications.De Cleyn, S. H., Braet, J., & Klofsten, M. (2015). How human capital interacts with the early development of academic spin-offs. International Entrepreneurship and Management Journal, 11(3), 599–621.Doutriaux, J., & Peterman, D. (1982). Technology transfer and academic entrepreneurship. Babson Park: Frontiers of Entrepreneurship Research, Babson College Entrepreneurship Research Conference (BCERC).Eisenhardt, K. M. (1989). Building Theories from Case Study Research. Academy of Management Review, 14(4), 532–550.European Commission (2017). Erasmus 2013–14. Top 500 higher education institutions receiving Erasmus students. Resource document. EC. http://ec.europa.eu/dgs/education_culture/repository/education/library/statistics/2014/erasmus-receiving-institutions_en.pdf Accessed 5 October 2017.Eurovoc (2017). Mutilingual Thesaurus of the European Union. Resource document. http://eurovoc.europa.eu Accessed 03 February 2017.Franzoni, C. & Lissoni, F. (2006). Academic entrepreneurship, patents and spinoffs: Critical issues and lessons for Europe. CESPRI, Università Commerciale “Luigi Bocconi”. Working Paper No. 80.Fritsch, M., & Aamoucke, R. (2013). Regional public research, higher education, and innovative start-ups: An empirical investigation. Small Business Economics, 41, 865–885.Gartner, W. B. (1985). A conceptual framework for describing the phenomenon of new venture creation. The Academy of Management Review, 10, 696–706.Gartner, W. B. (1988). Who is an entrepreneur? is the wrong question. American Journal of Small Business, 12, 11–32.Geuna, A., & Nesta, L. J. J. (2006). University Patenting and its Effects on Academic Research: The merging European Evidence. Research Policy, 35, 790–807.Gibbert, M., & Ruigrok, W. (2010). The “What” and “How” of the case Study Rigor: Three Strategies based on Published Work. Organizational Research Methods, 13(4), 710–737.Gómez Gras, J. M., Galiana Lapera, D. R., Mira Solves, I., Verdú Jover, A. J., & Sancho Azuar, J. (2008). An empirical approach to the organisational determinants of spin-off creation in European universities. International Entrepreneurship and Management Journal, 4(2), 187–198.Grandi, A., & Grimaldi, R. (2005). Academics' organizational characteristics and the generation of successful business ideas. Journal of Business Venturing, 20(6), 821–845.Güemes, J.J. (2011), “Global Entrepreneurship Monitor. Informe GEM España 2010”. Resource document. GEM España. http://www.gemconsortium.org/docs/download/616. Accessed 15 January 2015 .Guerrero, M., & Urbano, D. (2012). The development of an entrepreneurial university. Journal of Technology Transfer, 37(1), 43–74.Guerrero, M., Urbano, D., Cunningham, J., & Organ, D. (2014). Entrepreneurial universities in two European regions: a case study comparison. Journal of Technology Transfer, 39(3), 415–434.Hoang, H., & Antoncic, B. (2003). Network-based research in entrepreneurship: A critical review. Journal of Business Venturing, 18(2), 165–187.Hofstede, G. (1980). Culture’s Consequences. International differences in work-related values. Beverly Hills: Sage.Hofstede, G. (2001). Culture’s consequences: Comparing values, behaviours, institutions, and organizations across nations (2nd ed.). Thousand Oaks: Sage.Hülsbeck, M., & Pickavé, E. N. (2014). Regional knowledge production as determinant of high-technology entrepreneurship: Empirical evidence for Germany. International Entrepreneurship and Management Journal, 10, 121–138.INE (2016). INEbase: Operaciones estadísticas. Instituto Nacional de Estadística (National [Spanish] Statistical Institute). Resource document. INE. http://www.ine.es/inebmenu/indice.htm . Accessed 2 July 2016.Kalar, B., & Antoncic, B. (2015). The entrepreneurial university, academic activities and technology and knowledge transfer in four European countries. Technovation, 36-37, 1–11.Kroll, H. (2009). Demonstrating the instrumentality of motivation oriented approaches for the explanation of academic spin-off formation—an application based on the Chinese case. International Entrepreneurship and Management Journal, 5, 97–116.LAEI (2013). Ley 14/2013, de 27 de septiembre, de Apoyo a Emprendedores y su Internacionalización (‘Act of Support to Entrepreneurs and their Internationalization’). Government of Spain, 27 September. Resource document: http://www.boe.es/boe/dias/2013/09/28/pdfs/BOE-A-2013-10074.pdf . Accessed 10 March 2016.Lam, A., & De Campos, A. (2015). Content to be sad’ or ‘runaway apprentice’? The psychological contract and career agency of young scientists in the entrepreneurial university. Human Relations, 68(5), 811–841.LCTI (2011). Ley 14/2011, de 1 de junio, de la Ciencia, la Tecnología y la Innovación (‘Science, Technology and Innovation Act’). Government of Spain, 1 June. Resource document: http://www.boe.es/boe/dias/2011/06/02/pdfs/BOE-A-2011-9617.pdf . Accessed 10 March 2016.León-Darder, F. (2016). La internacionalització de l’empresa valenciana. In E. Seguí-Mas (Ed.), Una nova via per a l’empresa valenciana (pp. 61–80). Catarroja: Editorial Afers & Fundació Nexe.LES (2011). Ley 2/2011, de 4 de marzo, de Economía Sostenible (‘Sustainable Economy Act’). Government of Spain, 4 March, Resource document. http://www.boe.es/boe/dias/2011/03/05/pdfs/BOE-A-2011-4117.pdf. Accessed 10 March 2016 .Leyden, D. P., & Link, A. N. (2013). Knowledge spillovers, collective entrepreneurship, and economic growth: The role of universities. Small Business Economics, 41, 797–817.Lindelöf, P., & Löfsten, H. (2006). Environmental hostility and firm behavior – An empirical examination of new technology-based firms on science parks. Journal of Small Business Management, 44(3), 386–406.Link, N., & Scott, T. (2005). Opening the ivory’s tower door: An analysis of the determinants of the formation of US university spin-off companies. Research Policy, 34, 1106–1112.Lockett, A., & Wright, M. (2005). Resources, capabilities, risk capital and the creation of university spin-out companies. Research Policy, 34, 1043–1057.LOMLOU (2007). Ley Orgánica 4/2007, de 12 de abril, por la que se modifica la Ley Orgánica 6/2011, de 21 de diciembre, de Universidades (‘Act of Modification of the University Act’). Government of Spain, 12 April. Resource document. https://www.boe.es/boe/dias/2007/04/13/pdfs/A16241-16260.pdf (accessed 11 March 2016).LOU (2001). Ley Orgánica 6/2001, de Universidades (‘University Act’). Government of Spain, 21 December. Resource document: https://www.boe.es/boe/dias/2001/12/24/pdfs/A49400-49425.pdf . Accessed 11 March 2016.Martinelli, A., Meyer, M., & Von Tunzelmann, N. (2008). Becoming an entrepreneurial university? A case study of knowledge exchange relationships and faculty attitudes in a medium-sized, research-oriented university. Journal of Technology Transfer, 33, 259–283.Martínez Carrascal, C. & Mulino Ríos, M. (2014). La evolución del crédito bancario a las empresas españolas según su tamaño. Un análisis basado en la explotación conjunta de la información de la CIR y de la CBI, Boletín Económico - Banco de España, Enero (January), pp. 117–125.Mathias, B. D., Williams, D. W., & Smith, A. R. (2015). Entrepreneurial inception: The role of imprinting in entrepreneurial action. Journal of Business Venturing, 30(1), 11–28.MIET (Spanish Ministry of Industry, Energy and Tourism) (2012). Estadísticas Pyme. Evolución e indicadores. No. 10″, Resource document. http://www.ipyme.org/Publicaciones/ESTADISTICAS_PYME_N10_2011.pdf. Accessed 2 May 2016 .Miles, M.B. & Huberman, A.M. (2008). Qualitative Data Analysis: an expanded sourcebook. Sage Publications.Morales-Gualdrón, S. Y., Gutiérrez-Gracias, & Roig Dobón, S. (2009). The entrepreneurial motivation in academia: A multidimensional construct. International Entrepreneurship and Management Journal, 6, 301–317.Mosey, S., & Wright, M. (2007). From human capital to social capital: A longitudinal study of technology-based academic entrepreneurs. Entrepreneur, 31, 909–936.Mosey, S., Lockett, A., & Westhead, P. (2006). Creating network bridges for university technology transfer: The Medici fellowship programme. Technology Analysis and Strategic Management, 18, 71–91.Mosey, S., Wright, M., & Clarysse, B. (2012a). Transforming traditional university structures for the knowledge economy through multidisciplinary institutes. Cambridge Journal of Economics, 36, 587–607.Mosey, S., Noke, H., & Binks, M. (2012b). The influence of human and social capital upon the entrepreneurial intentions and destinations of academics. Technology Analysis and Strategic Management, 24, 893–910.Moutinho, R., Au-Yong-Oliveira, M., Coelho, A., & Manso, J. P. (2016). Determinants of knowledge-based entrepreneurship: an exploratory approach. International Entrepreneurship and Management Journal, 12(1), 171–197.Mowery, D. C., Nelson, R. R., Sampat, B. N., & Ziedonis, A. A. (2001a). The growth of patenting and licensing by US universities: an assessment of the effects of Bayle-Dole Act of 1980. Research Policy, 30(1), 99–119.Mowery, D. C., Sampat, B. N., & Ziedonis, A. A. (2001b). Learning to patent: institutional experience, learning, and the characyeristics of US university Patents after the Bayle-Dole Act, 1981-1992. Management Science, 48(1), 73–89.O’Shea, R., Allen, J., Chevalier, A., & Roche, F. (2005). Entrepreneurial orientation, technology transfer and spinoff performance of US universities. Research Policy, 34, 994–1009.O’Shea, R., Allen, T., Morse, K., O’Gorman, C., & Roche, F. (2007). Delineating the anatomy of an entrepreneurial university: the Massachusetts Institute of Technology Experience. R&D Management, 37(1), 1–16.O’Shea, R., Chugh, H., & Allen, T. (2008). Determinants and consequences of university spinoff activity: A conceptual framework. Journal of Technology Transfer, 33, 653–666.Ortín, P., Salas, V., Trujillo, M.V., & Vendrell, F. (2007). El spin-off universitario en España como modelo de creación de empresas intensivas en tecnología. Ministerio de Industria, Turismo y Comercio. Secretaría General de Industria. Dirección General de Política de la Pyme. Resource document. http://www.ipyme.org/Publicaciones/Informe spinnoff.pdf . Accessed 2 October 2016.Papaoikonomou, E., Segarra, P., & Li, X. (2012). Entrepreneurship in the context of crisis: Identifying barriers and proposing strategies. International Advances in Economic Research, 18, 111–119.Piperopoulos, P., & Piperopoulos, G. (2010). Is Greece finally on the right path toward entrepreneurship, innovation, and business clusters? International Journal of Public Administration, 33(1), 55–59.Powers, B., & McDougall, P. (2005). University startup formation and technology licensing with firms that go public: A resource-based view of academic entrepreneurship. Journal of Business Venturing, 20, 291–311.Red OTRI (2016). Informe de la Encuesta de Investigación y Transferencia 2014 de las universidades españolas. Resource document. http://www.redotriuniversidades.net/index.php/informa-encuesta/6-encuesta-redotri/informa-encuesta-2014/download . Accessed 22 June 2016.Redero San-Román, M. (2002). Origen y desarrollo de la universidad franquista. Studia Zamorensia, 6, 337–352.Rodríguez-Gulías, M. J., Rodeiro-Pazos, D., & Fernández-López, S. (2017). The effect of university and regional knowledge spillovers on firms’ performance: an analysis of the Spanish USOs. International Entrepreneurship and Management Journal, 13(1), 191–209.Rodríguez-San Pedro, L.E. (2014). Las universidades españolas en su contexto historic. Resource document. Universia. http://universidades.universia.es/universidades-de-pais/historia-de-universidades/historia-universidad-espanola/pasado-reciente/pasado-reciente-multiplicidad-regimen-autonomico.html . Accessed 28 July 2015.Samsom, K., & Gurdon, M. (1990). Entrepreneurial scientist: Organizational performance in scientist-started high technology firms. Forest Park: Frontiers of Entrepreneurship Research, Babson College Entrepreneurship Research Conference (BCERC).Schmitz, A., Urbano, D., Dandolini, G. A., de Souza, J. A., & Guerrero, M. (2017). Innovation and entrepreneurship in the academic setting: A systematic literature review. International Entrepreneurship and Management Journal, 13(2), 369–395.Shane, S., & Khurana, R. (2003). Bringing individuals back in: The effects of career experience on new firm founding. Industrial and Corporate Change, 12, 519–543.Shapero, A., & Sokol, L. (1982). The social dimensions of entrepreneurship. In C. A. Kent, D. L. Sexton, & K. H. Vesper (Eds.), Encyclopaedia of entrepreneurship (pp. 72–90). Englewood Cliffs: Prentice Hall.Smilor, R. W., Gibson, D. V., & Dietrich, G. B. (1990). University spin-out companies: technology start-ups from UT-Austin. Journal of Business Venturing, 5(1), 63–76.Soler i Marco, V. (2009). Creixement i canvi estructural. In V. Soler (Ed.), Economia espanyola i del País Valencià. Valencia: Publicacions de la Universitat de València.Suddaby, R., Bruton, G. D., & Si, S. X. (2015). Entrepreneurship through a qualitative lens: Insights on the construction and/or discovery of entrepreneurial opportunity. Journal of Business Venturing, 30(1), 1–10.Tech Transfer UPV FCR (2016). Air Nostrum, Caixa Popular e IVI entran en el fondo de la UPV. Resource document. TTUPV FCR. http://www.techtransferupv.com/noticias/air-nostrum-caixa-popular-e-ivi-entran-en-el-fondo-de-la-upv/ (4 April) Accessed 10 July 2016.The Times Higher Education (2017). 100 Under 50 Ranking 2017. Resource document. THE. https://www.timeshighereducation.com/world-university-rankings/2017/young-university-rankings#!/page/0/length/-1/sort_by/rank/sort_order/asc/cols/stats . Accessed 15 august 2017.UPV (2007). Instituto IDEAS 15 aniversario (1992–2007). Resource document. UPV. http://www.upv.es/entidades/IDEAS/menu_urlv.html?http://www.upv.es/entidades/IDEAS/info/memoria15a%F1os.pdf . Accessed 10 April 2016.UPV (2011). Corporación empresarial. Resource document. UPV. http://www.upv.es/noticias-upv/noticia-4904-corporacion-emp-es.html . Accessed 10 April 2016.UPV (2014). Plan de emprendimiento global. Resource document. UPV. https://www.upv.es/noticias-upv/noticia-6846-plan-de-emprend-es.html . Accessed 10 April 2016.UPV (2015). Jornadas de Puertas Abiertas 2015–16. Resource document. UPV. www.upv.es/contenidos/ORIENTA/info/jpa_ciclos_2015-16.ppt . Accessed 10 April 2016.UPV (2017a). Spin-Off UPV. Resource document. UPV. http://www.upv.es/entidades/I2T/info/891434normalc.html . Accessed 5 October 2017.UPV (2017b). Ciudad Politécnica de la Innovación. Parque Científico en Red de la Universidad Politécnica de Valencia. Quienes Somos. Presentación. Resource document. UPV. http://cpi.upv.es/quienes-somos/presentacion . Accessed 5 October 2017.UPV (2017c). Servicio de Promoción y Apoyo a la Investigación, la Innovación y la Transferencia. Presentación. Resource document. UPV. http://i2t.webs.upv.es/i2t/presentacion.php. Accessed 5 October 2017 .UPV. (2017d). Tech Transfer UPV. UPV: Resource document http://www.upv.es/noticias-upv/noticia-8355-tech-transfer-u-es.html. Accessed 5 October 2017 .UPV (2017e). Mission statement, vision and values. Resource document. UPV. https://www.upv.es/organizacion/la-institucion/misionvisionvalores-plan-upv-en.html Accessed 17 October 2017.Vargas Vasserot, C. (2012). Las spin-offs académicas y su posible configuración como empresas de economía social. REVESCO. Revista de Estudios Cooperativos, 107, 186–205.VLC/Campus (2017). VLC/Campus. Valencia, International Campus of Excellence. Resource document. UPV. http://www.vlc-campus.com/en . Accessed 5 October 2017.Walter, A., Auer, M., & Ritter, T. (2006). The impact of network capabilities and entrepreneurial orientation on university spin-off performance. Journal of Business Venturing, 21(4), 541–567.Weatherston, J. (1995). Academic Entrepreneurs: Is a spin-off Company too risky. Proceedings of the 40th International Council on Small Business, Sydney, 18–21.Willoughby, M., Talon, J., Millet, J., & Ayats, C. (2013). University services for fostering creativity in hi-tech firms. The Service Industries Journal, 33, 1103–1116.Wright, M., & Mosey, S. (2012). Strategic entrepreneurship, resource orchestration and growing spin-offs from universities. Technology Analysis and Strategic Management, 24, 911–927.Wright, M., Clarysse, B., Mustar, P., & Lockett, A. (2007). Academic Entrepreneurship in Europe. Cheltenham: Edward Elgar.Yin, R. K. (1994). Case study research: Design and methods (2nd ed.). Sage: Thousand Oaks.Yusof, M., & Jain, K. J. (2010). Categories of university-level entrepreneurship: A literature survey. International Entrepreneurship and Management Journal, 6(1), 81–86

    Ionization and scintillation response of high-pressure xenon gas to alpha particles

    Get PDF
    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas

    Obstetric–neonatal care during birth and postpartum in symptomatic and asymptomatic women infected with SARS-CoV-2: a retrospective multicenter study

    Get PDF
    This study analyses the obstetric–neonatal outcomes of women in labour with symptomatic and asymptomatic COVID-19. A retrospective, multicenter, observational study was carried out between 1 March 2020 and 28 February 2021 in eight public hospitals in the Valencian community (Spain). The chi-squared test compared the obstetric–neonatal outcomes and general care for symptomatic and asymptomatic women. In total, 11,883 births were assisted in participating centers, with 10.9 per 1000 maternities (n = 130) infected with SARS-CoV-2. The 20.8% were symptomatic and had more complications both upon admission (p = 0.042) and during puerperium (p = 0.042), as well as transfer to the intensive care unit (ICU). The percentage of admission to the Neonatal Intensive Care Unit (NICU) was greater among offspring of symptomatic women compared to infants born of asymptomatic women (p < 0.001). Compared with asymptomatic women, those with symptoms underwent less labour companionship (p = 0.028), less early skin-to-skin contact (p = 0.029) and greater mother–infant separation (p = 0.005). The overall maternal mortality rate was 0.8%. No vertical transmission was recorded. In conclusion, symptomatic infected women are at increased risk of lack of labour companionship, mother–infant separation, and admission to the ICU, as well as to have preterm births and for NICU admissions

    Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment

    Get PDF
    NEXT-DEMO is a large scale prototype and demonstrator of the NEXT-100 High Pressure Xenon Gas TPC, which will search for the neutrinoless double beta decay of Xe-136 using 100-150 kg of enriched xenon gas. The apparatus was built to prove the expected performance of NEXT-100, namely, energy resolution better than 1% FWHM at 2.5 MeV and event topological reconstruction. In this paper we describe the operation and initial results of the detector. A resolution of 1.7% FWHM at 511 keV (0.77% FWHM at 2.5 MeV) is obtained in the full fiducial volume of the detector. A topological analysis shows that electrons are identified by the characteristic blob energy deposit associated to the Bragg peak in 98.5% of the cases, with a rate of misidentification (two blobs) of 0.14%
    corecore