92 research outputs found

    Anisotropic Magnetoresistance in Ga1−x_{1-x}Mnx_xAs

    Full text link
    We have measured the magnetoresistance in a series of Ga1−x_{1-x}Mnx_xAs samples with 0.033≤x≤\le x \le 0.053 for three mutually orthogonal orientations of the applied magnetic field. The spontaneous resistivity anisotropy (SRA) in these materials is negative (i.e. the sample resistance is higher when its magnetization is perpendicular to the measuring current than when the two are parallel) and has a magnitude on the order of 5% at temperatures near 10K and below. This stands in contrast to the results for most conventional magnetic materials where the SRA is considerably smaller in magnitude for those few cases in which a negative sign is observed. The magnitude of the SRA drops from its maximum at low temperatures to zero at TC_C in a manner that is consistent with mean field theory. These results should provide a significant test for emerging theories of transport in this new class of materials.Comment: 4 pages with 4 figures. Submitted to Physical Review

    Creation of multiple nanodots by single ions

    Full text link
    In the challenging search for tools that are able to modify surfaces on the nanometer scale, heavy ions with energies of several 10 MeV are becoming more and more attractive. In contrast to slow ions where nuclear stopping is important and the energy is dissipated into a large volume in the crystal, in the high energy regime the stopping is due to electronic excitations only. Because of the extremely local (< 1 nm) energy deposition with densities of up to 10E19 W/cm^2, nanoscaled hillocks can be created under normal incidence. Usually, each nanodot is due to the impact of a single ion and the dots are randomly distributed. We demonstrate that multiple periodically spaced dots separated by a few 10 nanometers can be created by a single ion if the sample is irradiated under grazing angles of incidence. By varying this angle the number of dots can be controlled.Comment: 12 pages, 6 figure

    High-Temperature Hall Effect in Ga(1-x)Mn(x)As

    Full text link
    The temperature dependence of the Hall coefficient of a series of ferromagnetic Ga(1-x)Mn(x)As samples is measured in the temperature range 80K < T < 500K. We model the Hall coefficient assuming a magnetic susceptibility given by the Curie-Weiss law, a spontaneous Hall coefficient proportional to rho_xx^2(T), and including a constant diamagnetic contribution in the susceptibility. For all low resistivity samples this model provides excellent fits to the measured data up to T=380K and allows extraction of the hole concentration (p). The calculated p are compared to alternative methods of determining hole densities in these materials: pulsed high magnetic field (up to 55 Tesla) technique at low temperatures (less than the Curie temperature), and electrochemical capacitance- voltage profiling. We find that the Anomalous Hall Effect (AHE) contribution to rho_xy is substantial even well above the Curie temperature. Measurements of the Hall effect in this temperature regime can be used as a testing ground for theoretical descriptions of transport in these materials. We find that our data are consistent with recently published theories of the AHE, but they are inconsistent with theoretical models previously used to describe the AHE in conventional magnetic materials.Comment: 6 pages, 5 figures, 1 table. Accepted to Phys.Rev.

    Development and characterisation of a large diameter decellularised vascular allograft

    Get PDF
    The aims of this study were to develop a biological large diameter vascular graft by decellularisation of native human aorta to remove the immunogenic cells whilst retaining the essential biomechanical, and biochemical properties for the ultimate benefit of patients with infected synthetic grafts. Donor aortas (n = 6) were subjected to an adaptation of a propriety decellularisation process to remove the cells and acellularity assessed by histological analysis and extraction and quantification of total DNA. The biocompatibility of the acellular aortas was determined using standard contact cytotoxicity tests. Collagen and denatured collagen content of aortas was determined and immunohistochemistry was used to determine the presence of specific extracellular matrix proteins. Donor aortas (n = 6) were divided into two, with one half subject to decellularisation and the other half retained as native tissue. The native and decellularised aorta sections were then subject to uniaxial tensile testing to failure [axial and circumferential directions] and suture retention testing. The data was compared using a paired t-test. Histological evaluation showed an absence of cells in the treated aortas and retention of histoarchitecture including elastin content. The decellularised aortas had less than 15 ng mg¯¹ total DNA per dry weight (mean 94% reduction) and were biocompatible as determined by in vitro contact cytotoxicity tests. There were no gross changes in the histoarchitecture [elastin and collagen matrix] of the acellular aortas compared to native controls. The decellularisation process also reduced calcium deposits within the tissue. The uniaxial tensile and suture retention testing revealed no significant differences in the material properties (p > 0.05) of decellularised aorta. The decellularisation procedure resulted in minimal changes to the biological and biomechanical properties of the donor aortas. Acellular donor aorta has excellent potential for use as a large diameter vascular graft

    Conductance Quantization in Resistive Random Access Memory

    Get PDF

    International Experience in Attracting Foreign Direct Investment

    Full text link
    The article substantiates the need for an effective policy of attracting foreign direct investment, identifies external and internal factors influencing the ability and volumes of attracting foreign investment in the economy. Based on studying the global experience in attracting foreign investments, the main directions for increasing the investment attractiveness of the economy have been identifie

    Raman microscopy of phthalocyanines in cells

    No full text
    The results are presented of the study of intracellular localization of Co-phthalocyanines. The methods were used of Raman and fluorescence microspectroscopy

    The Impact of Roller Pump vs. Centrifugal Pump on Homologous Blood Transfusion in Pediatric Cardiac Surgery

    No full text
    Centrifugal pumps are considered to be less destructive to blood elements(1) when compared to roller pumps. However, their large prime volumes render them unsuitable as arterial pumps in heart lung machine (HLM) circuitry for children. In November of 2014, the circuit at Arnold Palmer Hospital, a Biomedicus BP-50 with kinetic assist venous drainage (KAVD) and 1/4″ tubing was converted to a roller pump in the arterial position with gravity drainage. Vacuum-assisted venous drainage (VAVD) was mounted on the HLM as a backup, but not used. Tubing was changed to 3/16″ in the arterial line in patients <13 kg. A retrospective study with a total of 140 patients compared patients placed on cardiopulmonary bypass (CPB) with Biomedicus centrifugal pumps and KAVD (Centrifugal Group, n = 40) to those placed on CPB with roller pumps and gravity drainage (Roller Group, n = 100). Patients requiring extra-corporeal membrane oxygenation (ECMO)/cardio-pulmonary support (CPS) or undergoing a hybrid procedure were excluded. Re-operation or circulatory arrest patients were not excluded. Prime volumes decreased by 57% from 456 ± 34 mL in the Centrifugal Group to 197 ± 34 mL in the Roller Group (p < .001). There was a corresponding increase in hematocrit (HCT) of blood primes and also on CPB. Intraoperative homologous blood transfusions also decreased 55% from 422 mL in the Centrifugal Group to 231 mL in the Roller Group (p < .001). The Society of Thoracic Surgeons--European Association for Cardio-Thoracic Surgery (STAT) categorized intubation times and hospital length of stay (LOS) for all infants showed a trend toward reduction, but was not statistically significant. Overall mortality was 5% utilizing the centrifugal configuration and 0% in the roller pump cohort. We demonstrated that the transition to roller pumps in the arterial position of the HLM considerably reduced our priming volume and formed a basis for a comprehensive blood conservation program. By maintaining higher HCTs on CPB, we were able to reduce intraoperative homologous blood transfusions
    • …
    corecore