The temperature dependence of the Hall coefficient of a series of
ferromagnetic Ga(1-x)Mn(x)As samples is measured in the temperature range 80K <
T < 500K. We model the Hall coefficient assuming a magnetic susceptibility
given by the Curie-Weiss law, a spontaneous Hall coefficient proportional to
rho_xx^2(T), and including a constant diamagnetic contribution in the
susceptibility. For all low resistivity samples this model provides excellent
fits to the measured data up to T=380K and allows extraction of the hole
concentration (p). The calculated p are compared to alternative methods of
determining hole densities in these materials: pulsed high magnetic field (up
to 55 Tesla) technique at low temperatures (less than the Curie temperature),
and electrochemical capacitance- voltage profiling. We find that the Anomalous
Hall Effect (AHE) contribution to rho_xy is substantial even well above the
Curie temperature. Measurements of the Hall effect in this temperature regime
can be used as a testing ground for theoretical descriptions of transport in
these materials. We find that our data are consistent with recently published
theories of the AHE, but they are inconsistent with theoretical models
previously used to describe the AHE in conventional magnetic materials.Comment: 6 pages, 5 figures, 1 table. Accepted to Phys.Rev.