506 research outputs found

    A study of omega bands and Ps6 pulsations on the ground, at low altitude and at geostationary orbit

    Get PDF
    We investigate the electrodynamic coupling between auroral omega bands and the inner magnetosphere. The goal of this study is to determine the features to which omega bands map in the magnetosphere. To establish the auroral-magnetosphere connection, we appeal to the case study analysis of the data rich event of September 26, 1989. At 6 magnetic local time (MLT), two trains of Ps6 pulsations (ground magnetic signatures of omega bands) were observed to drift over the Canadian Auroral Network For the OPEN Program Unified Study (CANOPUS) chain. At the same time periodic ionospheric flow patterns moved through the collocated Bistatic Auroral Radar System (BARS) field of view. Similar coincident magnetic variations were observed by GOES 6, GOES 7 and SCATHA, all of which had magnetic foot points near the CANOPUS/BARS stations. SCATHA, which was located at 6 MLT, 0.5 RE earthward of GOES 7 observed the 10 min period pulsations, whereas GOES 7 did not. In addition, DMSP F6 and F8 were over-flying the region and observed characteristic precipitation and flow signatures. From this fortunate constellation of ground and space observations, we conclude that auroral omega bands are the electrodynamic signature of a corrugated current sheet (or some similar spatially localized magnetic structure) in the near-Earth geostationary magnetosphere

    Modified elongated betatron accelerator

    Get PDF

    Coronal mass ejections, magnetic clouds, and relativistic magnetospheric electron events: ISTP

    Get PDF
    The role of high-speed solar wind streams in driving relativistic electron acceleration within the Earth\u27s magnetosphere during solar activity minimum conditions has been well documented. The rising phase of the new solar activity cycle (cycle 23) commenced in 1996, and there have recently been a number of coronal mass ejections (CMEs) and related “magnetic clouds” at 1 AU. As these CME/cloud systems interact with the Earth\u27s magnetosphere, some events produce substantial enhancements in the magnetospheric energetic particle population while others do not. This paper compares and contrasts relativistic electron signatures observed by the POLAR, SAMPEX, Highly Elliptical Orbit, and geostationary orbit spacecraft during two magnetic cloud events: May 27–29, 1996, and January 10–11, 1997. Sequences were observed in each case in which the interplanetary magnetic field was first strongly southward and then rotated northward. In both cases, there were large solar wind density enhancements toward the end of the cloud passage at 1 AU. Strong energetic electron acceleration was observed in the January event, but not in the May event. The relative geoeffectiveness for these two cases is assessed, and it is concluded that large induced electric fields (∂B/∂t) caused in situ acceleration of electrons throughout the outer radiation zone during the January 1997 event

    The Energy of a Plasma in the Classical Limit

    Get PDF
    When \lambda_{T} << d_{T}, where \lambda_{T} is the de Broglie wavelength and d_{T}, the distance of closest approach of thermal electrons, a classical analysis of the energy of a plasma can be made. In all the classical analysis made until now, it was assumed that the frequency of the fluctuations \omega << T (k_{B}=\hbar=1). Using the fluctuation-dissipation theorem, we evaluate the energy of a plasma, allowing the frequency of the fluctuations to be arbitrary. We find that the energy density is appreciably larger than previously thought for many interesting plasmas, such as the plasma of the Universe before the recombination era.Comment: 10 pages, 2 figures, accepted for publication in Phys.Rev.Let

    Observations of magnetospheric substorms occurring with no apparent solar wind/IMF trigger

    Get PDF
    An outstanding topic in magnetospheric physics is whether substorms are always externally triggered by disturbances in either the interplanetary magnetic field or solar wind, or whether they can also occur solely as the result of an internal magnetospheric instability. Over the past decade, arguments have been made on both sides of this issue. Horwitz and McPherron have shown examples of substorm onsets which they claimed were not externally triggered. However, as pointed out by Lyons, there are several problems associated with these studies that make their results somewhat inconclusive. In particular, in the McPherron et al. study, fluctuations in the B{sub y} component were not considered as possible triggers. Furthermore, Lyons suggests that the sharp decreases in the AL index during intervals of steady IMF/solar wind, are not substorms at all but rather that they are just enhancements of the convection driven DP2 current system that are often observed to occur during steady magnetospheric convection events. In the present study, we utilize a much more comprehensive dataset (consisting of particle data from the Los Alamos energetic particle detectors at geosynchronous orbit, IMP 8 magnetometer and plasma data, Viking UV auroral imager data, mid-latitude Pi2 pulsation data, ground magnetometer data and ISEE1 magnetic field and energetic particle data) to show as unambiguously as possible that typical substorms can indeed occur in the absence of an identifiable trigger in the solar wind/IMF

    Stopping of Charged Particles in a Magnetized Classical Plasma

    Get PDF
    The analytical and numerical investigations of the energy loss rate of the test particle in a magnetized electron plasma are developed on the basis of the Vlasov-Poisson equations, and the main results are presented. The Larmor rotation of a test particle in a magnetic field is taken into account. The analysis is based on the assumption that the energy variation of the test particle is much less than its kinetic energy. The obtained general expression for stopping power is analyzed for three cases: (i) the particle moves through a collisionless plasma in a strong homogeneous magnetic field; (ii) the fast particle moves through a magnetized collisionless plasma along the magnetic field; and (iii) the particle moves through a magnetized collisional plasma across a magnetic field. Calculations are carried out for the arbitrary test particle velocities in the first case, and for fast particles in the second and third cases. It is shown that the rate at which a fast test particle loses energy while moving across a magnetic field may be much higher than the loss in the case of motion through plasma without magnetic field.Comment: 14 pages, 3 figures, LaTe

    Theory of laser ion acceleration from a foil target of nanometers

    Full text link
    A theory for laser ion acceleration is presented to evaluate the maximum ion energy in the interaction of ultrahigh contrast (UHC) intense laser with a nanometer-scale foil. In this regime the energy of ions may be directly related to the laser intensity and subsequent electron dynamics. This leads to a simple analytical expression for the ion energy gain under the laser irradiation of thin targets. Significantly, higher energies for thin targets than for thicker targets are predicted. Theory is concretized to the details of recent experiments which may find its way to compare with these results.Comment: 22 pages 7 figures. will be submitted to NJ

    Recovery phase of magnetic storms induced by different interplanetary drivers

    Full text link
    Statistical analysis of Dst behaviour during recovery phase of magnetic storms induced by different types of interplanetary drivers is made on the basis of OMNI data in period 1976-2000. We study storms induced by ICMEs (including magnetic clouds (MC) and Ejecta) and both types of compressed regions: corotating interaction regions (CIR) and Sheaths. The shortest, moderate and longest durations of recovery phase are observed in ICME-, CIR-, and Sheath-induced storms, respectively. Recovery phases of strong (Dstmin<−100Dst_{min} < -100 nT) magnetic storms are well approximated by hyperbolic functions Dst(t)=a/(1+t/τh)Dst(t)= a/(1+t/\tau_h) with constant τh\tau_h times for all types of drivers while for moderate (−100<Dstmin<−50-100 < Dst_{min} < -50 nT) storms DstDst profile can not be approximated by hyperbolic function with constant τh\tau_h because hyperbolic time τh\tau_h increases with increasing time of recovery phase. Relation between duration and value DstminDst_{min} for storms induced by ICME and Sheath has 2 parts: DstminDst_{min} and duration correlate at small durations while they anticorrelate at large durations.Comment: 18 pages, 4 figures, 2 tables, submitted to JGR special issue "Response of Geospace to High-Speed Streams
    • 

    corecore