1,360 research outputs found

    Variability of selected trace elements of different meat cuts determined by ICP-MS and DRC-ICPMS

    Get PDF
    The aim of this study was to determine the levels of cadmium, lead, iron, zinc, selenium, manganese, copper and molybdenum in different cuts of beef, pork, lamb, chicken and foal collected from supermarkets and butcheries in Switzerland. The concentrations of manganese, copper, molybdenum, zinc, iron, selenium, cadmium and lead were determined by inductively coupled plasma mass spectrometry (ICP-MS) after microwave digestion. Mean values and their respective coefficients of variation were calculated from the measured concentrations. The concentrations found for cadmium and lead ranged from 0.6 to 3.9 μg/100 g and 1.0 to 2.1 μg/100 g, respectively. Concentrations ranged between 0.5 and 3.3 mg/100 g for iron, 0.7 and 5.1 mg/100 g for zinc, 9 and 44 μg/100 g for selenium, 3.1 and 16.7 μg/100 g for manganese, 0.3 and 132 μg/100 g for copper and 0.9 and 3.2 μg/100 g for molybdenum. Differences found for the concentrations in meat from different species as well as between the individual meat cuts were notable for iron, zinc, selenium and copper. Manganese concentrations were found to vary unsystematically within muscles and species. Molybdenum concentrations were higher in chicken meat in comparison with the mammalian meats. The highest coefficients of variation were found for manganese (13% to 142%) and copper (13% to 224%), while the lowest was found for zinc (4% to 45%). In conclusion, in order to provide an accurate overview and to be able to calculate reliable dietary intakes, it is important to include the variability in food composition dat

    Effect of Pelleting Temperature on the Activity of Different Enzymes

    Get PDF
    The effects of different pelleting temperatures on the activity of cellulase, bacterial amylase, fungal amylase, and pentosanase were tested. Samples of a commercial barley-wheat-soybean diet containing different enzyme preparations were pelleted at 60, 70, 80, 90, and 100 C (pellet temperature measured at the die outlet) through a die containing holes 2.5 mm in diameter. Enzymatic analyses were conducted on either soluble substrates or by measuring the ability of the tested enzymes to decrease the viscosity of the diet. Measurements made on soluble substrates suggest that cellulase, fungal amylase, and pentosanase maintained activity when being pelleted at temperatures up to 80 C and bacterial amylase maintained activity at temperatures up to 90 C. Pentosanase and amylases showed little or no effect on the viscosity of the diet. Cellulase addition decreased the viscosity at all temperature levels, even after being pelleted at 90 and 100 C (P < 0.05). No cellulolytic activity was detected on the soluble substrate after these pelleting temperatures. Measurements on a soluble substrate might therefore not always reflect the true stability of a preparation because the ability of a carbohydrase to decrease the viscosity of the digesta is important to its effect in the gastrointestinal tract. Measurements on soluble substrates suggest that cellulase, fungal amylase, and pentosanase can be pelleted at temperatures up to at least 80 C and bacterial amylase up to 90 C without a considerable loss in analyzed activit

    Shoot growth of woody trees and shrubs is predicted by maximum plant height and associated traits

    No full text
    1. The rate of elongation and thickening of individual branches (shoots) varies across plant species. This variation is important for the outcome of competition and other plant-plant interactions. Here we compared rates of shoot growth across 44 species from tropical, warm temperate, and cool temperate forests of eastern Australia.2. Shoot growth rate was found to correlate with a suite of traits including the potential height of the species, xylem-specific conductivity, leaf size, leaf area per xylem cross-section, twig diameter (at 40 cm length), wood density and modulus of elasticity.3. Within this suite of traits, maximum plant height was the clearest correlate of growth rates, explaining 50 to 67% of the variation in growth overall (p p 4. Growth rates were not strongly correlated with leaf nitrogen or leaf mass per unit leaf area.5. Correlations between growth and maximum height arose both across latitude (47%, p p p p < 0.0001), reflecting intrinsic differences across species and sites

    Orientation Analysis of Bulk YBCO from Incomplete Neutron Diffraction Data

    Full text link

    In situ TEM observations of plastic deformation in quartz crystals

    Get PDF
    With in situ nanocompression experiments in a transmission electron microscope, we investigated plastic deformation in natural quartz crystals and observed both dislocation plasticity as well as mechanical twinning. Through this experimental method, we are able to provide direct evidence of Dauphiné twin nucleation and could measure the intrinsic twinning stress. The twinning phenomena appear to include a memory effect, where the same twin can reappear upon successive loading and unloading events. The data provide insight into this twin generation mechanism and can be used as a benchmark for the use of twins in quartz for paleopiezometry. Together, the observation of room-temperature dislocation plasticity and reversible twinning adds new insight into the extensive field of quartz plasticity and demonstrates the usefulness of small-scale testing techniques for mineral physics

    Unlocking the secrets of Al-tobermorite in Roman seawater concrete

    Get PDF
    Ancient Roman syntheses of Al-tobermorite in a 2000-year-old concrete block submerged in the Bay of Pozzuoli (Baianus Sinus), near Naples, have unique aluminum-rich and silica-poor compositions relative to hydrothermal geological occurrences. In relict lime clasts, the crystals have calcium contents that are similar to ideal tobermorite, 33 to 35 wt%, but the low-silica contents, 39 to 40 wt%, reflect Al3+ substitution for Si4+ in Q(2)(1Al), Q(3)(1Al), and Q(3)(2Al) tetrahedral chain and branching sites. The Al-tobermorite has a double silicate chain structure with long chain lengths in the b [020] crystallographic direction, and wide interlayer spacing, 11.49 angstrom. Na+ and K+ partially balance Al3+ substitution for Si4+. Poorly crystalline calcium-aluminum-silicate-hydrate (C-A-S-H) cementitious binder in the dissolved perimeter of relict lime clasts has Ca/(Si+Al) = 0.79, nearly identical to the Al-tobermorite, but nanoscale heterogeneities with aluminum in both tetrahedral and octahedral coordination. The concrete is about 45 vol% glassy zeolitic tuff and 55 vol% hydrated lime-volcanic ash mortar; lime formed <10 wt% of the mix. Trace element studies confirm that the pyroclastic rock comes from Flegrean Fields volcanic district, as described in ancient Roman texts. An adiabatic thermal model of the 10 m(2) by 5.7 m thick Baianus Sinus breakwater from heat evolved through hydration of lime and formation of C-A-S-H suggests maximum temperatures of 85 to 97 degrees C. Cooling to seawater temperatures occurred in two years. These elevated temperatures and the mineralizing effects of seawater and alkali- and alumina-rich volcanic ash appear to be critical to Al-tobermorite crystallization. The long-term stability of the Al-tobermorite provides a valuable context to improve future syntheses in innovative concretes with advanced properties using volcanic pozzolans

    Atomic-Resolution 3D Electron Microscopy with Dynamic Diffraction

    Full text link

    The initiation and development of metamorphic foliation in the Otago Schist, Part 2: evidence from quartz grain-shape data

    Get PDF
    Shape, size and orientation measurements of quartz grains sampled along two transects that cross zones of increasing metamorphic grade in the Otago Schist, New Zealand, reveal the role of quartz in the progressive development of metamorphic foliation. Sedimentary compaction and diagenesis contributed little to the formation of a shape-preferred orientation (SPO) within the analysed samples. Metamorphic foliation was initiated at sub-greenschist facies conditions as part of a composite S1-bedding structure parallel to the axial planes of tight to isoclinal F1 folds. An important component of this foliation is a pronounced quartz SPO that formed dominantly by the effect of dissolution?precipitation creep on detrital grains in association with F1 strain. With increasing grade, the following trends are evident from the SPO data: (i) a progressive increase in the aspect ratio of grains in sections parallel to lineation, and the development of blade-shaped grains; (ii) the early development of a strong shape preferred orientation so that blade lengths define the linear aspect of the foliation (lineation) and the intermediate axes of the blades define a partial girdle about the lineation; (iii) a slight thinning and reduction in volume of grains in the one transect; and (iv) an actual increase in thickness and volume in the survivor grains of the second transect. The highest-grade samples, within the chlorite zone of the greenschist facies, record segregation into quartz- and mica-rich layers. This segregation resulted largely from F2 crenulation and marks a key change in the distribution, deformation and SPO of the quartz grains. The contribution of quartz SPO to defining the foliation lessens as the previously discrete and aligned detrital quartz grains are replaced by aggregates and layers of dynamically recrystallized quartz grains of reduced aspect ratio and reduced alignment. Pressure solution now affects the margins of quartz-rich layers rather than individual grains. In higher-grade samples, therefore, the rock structure is characterized increasingly by segregation layering parallel to a foliation defined predominantly by mica SPO
    corecore