13 research outputs found

    Butter from different species: composition and quality parameters of products commercialized in the south of Spain

    Get PDF
    Butter is an important product for the dairy industry due to its particular sensory attributes and nutritional value, while the variability of the composition of the fatty acids in the milk can alter the nutritional and physical properties of butter and its acceptance by consumers. Butter is highly appreciated for its distinctive flavor and aroma; however, one of its main drawbacks lies in the difficulty in spreading it at low temperatures. Several types of butter that are present in the market were used in this study. We assessed the variability in the composition of the samples regarding their texture, color properties, and volatile organic compound profiles. We analyzed samples commercially produced from sheep’s milk (SB), goat’s milk (GB), and cow’s milk (CB); samples from the latter species with (CSB) and without salt (CB); and the low-fat (CLB) version. All the physicochemical composition parameters were significantly affected by the effect of the type of butter, although only 29 out of the 45 fatty acids examined were identified in the butter samples analyzed. The textural properties of the butters were influenced by both their solid fat content and the fatty acid profile. In addition, the origin of the milk not only affected the texture parameters but also the color of the butters and the compounds associated with traits such as odor and flavor. Through the multivariate data analysis of butter fatty acids and volatile compound percentages, we observed a clear differentiation of the samples based on the species of origin

    First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.)

    Full text link
    [EN] Background: Zucchini fruit set can be limited due to unfavourable environmental conditions in off-seasons crops that caused ineffective pollination/fertilization. Parthenocarpy, the natural or artificial fruit development without fertilization, has been recognized as an important trait to avoid this problem, and is related to auxin signalling. Nevertheless, differences found in transcriptome analysis during early fruit development of zucchini suggest that other complementary pathways could regulate fruit formation in parthenocarpic cultivars of this species. The development of next-generation sequencing technologies (NGS) as RNA-sequencing (RNA-seq) opens a new horizon for mapping and quantifying transcriptome to understand the molecular basis of pathways that could regulate parthenocarpy in this species. The aim of the current study was to analyze fruit transcriptome of two cultivars of zucchini, a non-parthenocarpic cultivar and a parthenocarpic cultivar, in an attempt to identify key genes involved in parthenocarpy. Results: RNA-seq analysis of six libraries (unpollinated, pollinated and auxin treated fruit in a non-parthenocarpic and parthenocarpic cultivar) was performed mapping to a new version of C. pepo transcriptome, with a mean of 92% success rate of mapping. In the non-parthenocarpic cultivar, 6479 and 2186 genes were differentially expressed (DEGs) in pollinated fruit and auxin treated fruit, respectively. In the parthenocarpic cultivar, 10,497 in pollinated fruit and 5718 in auxin treated fruit. A comparison between transcriptome of the unpollinated fruit for each cultivar has been performed determining that 6120 genes were differentially expressed. Annotation analysis of these DEGs revealed that cell cycle, regulation of transcription, carbohydrate metabolism and coordination between auxin, ethylene and gibberellin were enriched biological processes during pollinated and parthenocarpic fruit set. Conclusion: This analysis revealed the important role of hormones during fruit set, establishing the activating role of auxins and gibberellins against the inhibitory role of ethylene and different candidate genes that could be useful as markers for parthenocarpic selection in the current breeding programs of zucchini.Research worked is supported by the project RTA2014-00078 from the Spanish Institute of Agronomy Research INIA (Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria) and also PP.AVA.AVA201601.7, FEDER y FSE (Programa Operativo FSE de Andalucia 2007-2013 "Andalucia se mueve con Europa"). TPV is supported by a FPI scholarship from RTA2011-00044-C02-01/02 project of INIA. The funding agencies were not involved in the design of the study, collection, analysis, and interpretation of data and in writing the manuscript.Pomares-Viciana, T.; Del Rio-Celestino, M.; Roman, B.; Die, J.; Picó Sirvent, MB.; Gómez, P. (2019). First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.). BMC Plant Biology. 19:1-20. https://doi.org/10.1186/s12870-019-1632-2S12019Varga A, Bruinsma J. Tomato. In: Monselise SP, editor. CRC Handbook of Fruit Set and Development. Boca Raton: CRC Press; 1986. p. 461–80.Nepi M, Cresti L, Guarnieri M, Pacini E. Effect of relative humidity on water content, viability and carbohydrate profile of Petunia hybrid and Cucurbita pepo pollen. Plant Syst Evol. 2010;284:57–64.Gustafson FG. Parthenocarpy: natural and artificial. Bot Rev. 1942;8:599–654.Robinson RW, Reiners S. Parthenocarpy in summer squash. Hortscience. 1999;34:715–7.Pomares-Viciana T, Die J, Del Río-Celestino M, Román B, Gómez P. Auxin signalling regulation during induced and parthenocarpic fruit set in zucchini. Mol Breeding. 2017;37:56.Ozga JA, Reinecke DM. Hormonal interactions in fruit development. J Plant Growth Regul. 2003;22:73–81.Kim IS, Okubo H, Fujieda K. Endogenous levels of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L). Sci Hortic. 1992;52:1–8.Olimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi GP, et al. Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta. 2007;226:877–88.Cui L, Zhang T, Li J, Lou Q, Chen J. Cloning and expression analysis of Cs-TIR1/AFB2: the fruit development-related genes of cucumber (Cucumis sativus L.). Acta Physiol Plant. 2014;36:139–49.De Jong M, Wolters-Arts J, Feron R, Mariani C, Vriezen WH. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signalling during tomato fruit set and development. Plant J. 2009;57:160–70.Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech JC, Bouzayen M. The tomato aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell. 2005;17(10):2676–92.Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM. AUXIN RESPONSE FACTOR 8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell. 2006;18(8):1873–86.Mazzucato A, Cellini F, Bouzayen M, Zouine M, Mila I, Minoia S et al. A TILLING allele of the tomato aux/IAA9 gene offers new insights into fruit set mechanisms and perspectives for breeding seedless tomatoes. Mol Breeding. 2015; 35(22):1-15.Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics. 2011;12:104.Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.Da Fonseca RR, Albrechtsen A, Themudo GE, Ramos-Madrigal J, Sibbesen JA, Maretty L, et al. Next-generation biology: sequencing and data analysis approaches for non-model organisms. Mar Genomics. 2016;30:3–13.Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13.Li J, Cui ZWJ, Zhang T, Guo Q, Xu J, Li J, et al. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L). Plant Cell Physiol. 2014;55(7):1325–42.Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2.Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí-Gómez C, et al. De novo assembly of the zucchini genome reveals a whole genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol J. 2017. https://doi.org/10.1111/pbi.12860 .Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol. 2008;177:60–76.Tang N, Deng W, Hu G, Hu N, Li Z. Transcriptome profiling reveals the regulatory mechanism underlying pollination dependent and parthenocarpic fruit set mainly mediated by auxin and gibberellin. PLoS One. 2015;10(4):e0125355.Li J, Yan S, Yang W, Li Y, Xia M, Chen Z, et al. Transcriptomic analysis reveals the roles of microtubule-related genes and transcription factors in fruit length regulation in cucumber (Cucumis sativus L.). Sci Rep. 2015;26(5):8031.Mironov V, De Veylder L, Van Montagu M, Inze D. Cyclin-dependent kinases and cell division in plants- the nexus. Plant Cell. 1999;11(4):509–22.Perrot-Rechenmann C. Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol. 2010;2(5):a001446.De Veylder L, Beeckman T, Beemster GT, Krols L, Terras F, Landrieu I, et al. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell. 2001;13:1653–68.Nieuwland J, Menges M, Murray JAH. The plant cyclins. In: Inze D, editor. Cell cycle control and plant development, vol. 2007. Oxford: Wiley-Blackwell Publishing; 2007. p. 33–61.Menges M, Samland AK, Planchais S, Murray JA. The D-type cyclin CYCD3;1 is limiting for the G1-to-S-phasetransition in Arabidopsis. Plant Cell. 2006;18:893–906.Boruc J, Mylle E, Duda M, De Clercq R, Rombauts S, Geelen D, et al. Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes. Plant Physiol. 2010;152(2):553–65.Sampedro J, Cosgrove DJ. The expansin superfamily. Genome Biol. 2005;6:242.Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E. A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci. 2006;103:236–41.De Folter S, Busscher J, Colombo L, Losa A, Angenent GC. Transcript profiling of transcription factors genes during siliques development in Arabidopsis. Plant Mol Bio. 2004;56:351–3662004.Son O, Cho HY, Kim MR, Lee H, Lee MS, Song E, et al. Induction of a homeodomain-leucine zipper gene by auxin is inhibited by cytokinin in Arabidopsis roots. Biochem Biophys Res Commun. 2005;326(1):203–9.Olsson ASB, Engstroem P, Seoderman E. The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol. 2004;55:663–77.Merrow SB, Hopp RJ. Storage effects on winter squashes. Associations between the sugar and starch content of and the degree of preference for winter squashes. J Agric Food Chem. 1961;9:321–6.Berg JM, Tymoczko JL, Stryer L. Carbohydrates. In: Freeman WH, editor. Biochemistry. 5th ed. New York: W H Freeman; 2002.Prabhakar V, Löttgert T, Gigolashvili T, Bell K, Flügge UI, Häusler RE. Molecular and functional characterization of the plastid-localized phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana. FEBS Lett. 2009;583(6):983–91.Rius SP, Casati P, Iglesias AA, Gomez-Casati DF. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol. 2008;148(3):1655–67.Van der Linde K, Gutsche N, Leffers HM, Lindermayr C, Müller B, Holtgrefe S, et al. Regulation of plant cytosolic aldolase functions by redox-modifications. Plant Physiol Biochem. 2011;49(9):946–57.Lim H, Cho MH, Jeon JS, Bhoo SH, Kwon YK, Hahn TR. Altered expression of pyrophosphate: fructose-6-phosphate 1-phosphotransferase affects the growth of transgenic Arabidopsis plants. Mol Cells. 2009;27(6):641–9.Baud S, Wuillème S, Dubreucq B, De Almeida A, Vuagnat C, Lepiniec L, et al. Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. Plant J. 2007;52:405–19.De Jong M, Mariani C, Vriezen WH. The role of auxin and gibberellin in tomato fruit set. J Exp Bot. 2009;60(5):1523–32.Martínez C, Manzano S, Megías Z, Garrido D, Picó B, Jamilena M. Involvement of ethylene biosynthesis and signalling in fruit set and early fruit development in zucchini squash (Cucurbita pepo L.). BMC Plant Biol. 2013;13:139.Serrani JC, Fos M, Atarés A, Garcia-martinez JL. Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv. micro-tom of tomato. J Plant Growth Regul. 2007;26:211–21.Mapelli S. Changes in cytokinin in the fruits of parthenocarpic and normal tomatoes. Plant Sci Lett. 1981;22:227–33.Ulmasov T, Hagen G, Guilfoyle TJ. Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci U S A. 1999;96:5844–9.Ulmasov T, Hagen G, Guilfoyle TJ. Dimerization and DNA binding of auxin response factors. Plant J. 1999;19:309–19.Tiwari SB, Hagen G, Guilfoyle TJ. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell. 2004;16:533–43.Switzenberg JA, Beaudry RM, Grumet R. Effect of CRC:: etr1-1 transgene expression on ethylene production, sex expression, fruit set and fruit ripening in transgenic melon (Cucumis melo L.). Transgenic Res. 2015;24(3):497-507.Nitsch LM, Oplaat C, Feron R, Ma Q, Wolters-Arts M, Hedden P, et al. Abscisic acid levels in tomato ovaries are regulated by LeNCED1 and SlCYP707A1. Planta. 2009;229(6):1335–46.Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods. 2008;5(7):621–8.Robinson MD, McCarthy DJ, Smyth GK. Edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2008;26(1):139–40.Raza K, Mishra A. A novel anticlustering filtering algorithm for the prediction of genes as a drug target. Am J Bio Engi. 2012;2(5):206–11.Van Iterson M, Boer JM, Menezes RX. Filtering, FDR and power. BMCBioinformatics. 2010;11:450.Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E. The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis. 2015. https://doi.org/10.1002/dvg.22877 .Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL. Nucleic Acids Res. 2000;28(1):45–8.Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36:W5–9.Wyatt LE, Strickler SR, Mueller LA, Mazourek M. An acorn squash (Cucurbita pepo ssp. ovifera) fruit and seed transcriptome as a resource for the study of fruit traits in Cucurbita. Hortic Res. 2015;2:14070. https://doi.org/10.1038/hortres.2014.70 .Zhang A, Ren GA, Sun YA, Guo H, Zhang SA, Zhang FA, et al. A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics. 2015;16:1101.Finn RD, Attwood TK, Babbit AB, Bork P, Bridge AJ, Chang HY. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw1107 .Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Sherlock G. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:480–4

    Sources, background and enrichment of lead and other elements: Lower Guadiana River

    Get PDF
    The lower sector of the Guadiana River Basin, located in southern Portugal and Spain, hosts soils and plants with elevated Pb, Cu and As near former and current mining sites. Two geogenic and two anthropogenic sources of Pb were identified where elevated concentrations are mostly related to the occurrence of sulphide-rich ore deposits, Volcanic Sedimentary formations and mining. These were generally reflected by the multiple regression analysis (MRA) and confirmed by isotope determinations. Nevertheless, caution was needed in interpreting statistical and isotopic results; therefore the combination of both techniques was important. Elements, such as Ca, Na, Cu and As, show enrichment in soil developed on shale, sandstone and conglomerate of Upper Devonian age belonging to the Phyllite-Quartzite Group. Lead exhibits an enrichment in soil developed on felsic volcanic rocks from the Volcanic Sedimentary Complex (VSC) of Upper Devonian-Lower Carboniferous age, which has been identified by the relationship between topsoil median values of different lithologies and grand subsoil median values. In the same soil, Fe, As, Co, Ni and Cr are depleted. Translocation of Pb to the aerial parts of plants is insignificant in all three plant species studied and analysed (Cistus ladanifer L., Thymus vulgaris, Lavandula luisieri). High Pb concentrations in soil, where Cistus ladanifer L. developed, the only representative number of species analysed, do not correspond generally to elevated Pb contents in plants, except near mine sites, where lower pH of soil, increases Pb bioavailability. The different statistical methodologies combined with Pb isotopic studies were successfully applied in the identification of Pb sources in soil and Cistus ladanifer L. plant of the Lower sector of Guadiana River basin. Therefore, rocks, mineralisations, subsoil, topsoil and plant processes were successfully integrated to understand the migration of Pb into the food chai

    First TILLING Platform in Cucurbita pepo: A New Mutant Resource for Gene Function and Crop Improvement

    Full text link
    Although the availability of genetic and genomic resources for Cucurbita pepo has increased significantly, functional genomic resources are still limited for this crop. In this direction, we have developed a high throughput reverse genetic tool: the first TILLING (Targeting Induced Local Lesions IN Genomes) resource for this species. Additionally, we have used this resource to demonstrate that the previous EMS mutant population we developed has the highest mutation density compared with other cucurbits mutant populations. The overall mutation density in this first C. pepo TILLING platform was estimated to be 1/133 Kb by screening five additional genes. In total, 58 mutations confirmed by sequencing were identified in the five targeted genes, thirteen of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was studied in a peroxidase gene, revealing that the phenotype of seedling homozygous for one of the isolated mutant alleles was albino. These results indicate that the TILLING approach in this species was successful at providing new mutations and can address the major challenge of linking sequence information to biological function and also the identification of novel variation for crop breeding.Financial support was provided by the Spanish Project INIA (Instituto Nacional de Investigacion y Tecnologia Agraria y Almentaria) RTA2011-00044C02-01, the ANR MELODY (ANR-11-BSV7-0024), the European Research Council (ERCSEXYPARTH), FEDER, and FSE funds. NVD has been awarded a grant by the Andalusian Institute of Agronomy Research IFAPA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Vicente-Dolera, N.; Troadec, C.; Moya, M.; Río-Celestino, MD.; Pomares-Viciana, T.; Bendahmane, A.; Picó Sirvent, MB.... (2014). First TILLING Platform in Cucurbita pepo: A New Mutant Resource for Gene Function and Crop Improvement. PLoS ONE. 9(11):112743-112743. https://doi.org/10.1371/journal.pone.0112743S112743112743911Paris, H. S., Yonash, N., Portnoy, V., Mozes-Daube, N., Tzuri, G., & Katzir, N. (2002). Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theoretical and Applied Genetics, 106(6), 971-978. doi:10.1007/s00122-002-1157-0Parry, M. A. J., Madgwick, P. J., Bayon, C., Tearall, K., Hernandez-Lopez, A., Baudo, M., … Phillips, A. L. (2009). Mutation discovery for crop improvement. Journal of Experimental Botany, 60(10), 2817-2825. doi:10.1093/jxb/erp189Gilchrist, E., & Haughn, G. (2010). Reverse genetics techniques: engineering loss and gain of gene function in plants. Briefings in Functional Genomics, 9(2), 103-110. doi:10.1093/bfgp/elp059McCallum, C. M., Comai, L., Greene, E. A., & Henikoff, S. (2000). Targeting Induced LocalLesions IN Genomes (TILLING) for Plant Functional Genomics. Plant Physiology, 123(2), 439-442. doi:10.1104/pp.123.2.439Colbert, T., Till, B. J., Tompa, R., Reynolds, S., Steine, M. N., Yeung, A. T., … Henikoff, S. (2001). High-Throughput Screening for Induced Point Mutations. Plant Physiology, 126(2), 480-484. doi:10.1104/pp.126.2.480Wang, T. L., Uauy, C., Robson, F., & Till, B. (2012). TILLINGin extremis. Plant Biotechnology Journal, 10(7), 761-772. doi:10.1111/j.1467-7652.2012.00708.xDong, C., Dalton-Morgan, J., Vincent, K., & Sharp, P. (2009). A Modified TILLING Method for Wheat Breeding. The Plant Genome Journal, 2(1), 39. doi:10.3835/plantgenome2008.10.0012Uauy, C., Paraiso, F., Colasuonno, P., Tran, R. K., Tsai, H., Berardi, S., … Dubcovsky, J. (2009). A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biology, 9(1), 115. doi:10.1186/1471-2229-9-115Kumar, A. P., Boualem, A., Bhattacharya, A., Parikh, S., Desai, N., Zambelli, A., … Bendahmane, A. (2013). SMART -- Sunflower Mutant population And Reverse genetic Tool for crop improvement. BMC Plant Biology, 13(1), 38. doi:10.1186/1471-2229-13-38Kurowska, M., Daszkowska-Golec, A., Gruszka, D., Marzec, M., Szurman, M., Szarejko, I., & Maluszynski, M. (2011). TILLING - a shortcut in functional genomics. Journal of Applied Genetics, 52(4), 371-390. doi:10.1007/s13353-011-0061-1Rigola, D., van Oeveren, J., Janssen, A., Bonné, A., Schneiders, H., van der Poel, H. J. A., … van Eijk, M. J. T. (2009). High-Throughput Detection of Induced Mutations and Natural Variation Using KeyPoint™ Technology. PLoS ONE, 4(3), e4761. doi:10.1371/journal.pone.0004761González, M., Xu, M., Esteras, C., Roig, C., Monforte, A. J., Troadec, C., … Picó, B. (2011). Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Research Notes, 4(1). doi:10.1186/1756-0500-4-289Elias, R., Till, B. J., Mba, C., & Al-Safadi, B. (2009). Optimizing TILLING and Ecotilling techniques for potato (Solanum tuberosum L). BMC Research Notes, 2(1), 141. doi:10.1186/1756-0500-2-141Dahmani-Mardas, F., Troadec, C., Boualem, A., Lévêque, S., Alsadon, A. A., Aldoss, A. A., … Bendahmane, A. (2010). Engineering Melon Plants with Improved Fruit Shelf Life Using the TILLING Approach. PLoS ONE, 5(12), e15776. doi:10.1371/journal.pone.0015776Boualem, A., Fleurier, S., Troadec, C., Audigier, P., Kumar, A. P. K., Chatterjee, M., … Bendahmane, A. (2014). Development of a Cucumis sativus TILLinG Platform for Forward and Reverse Genetics. PLoS ONE, 9(5), e97963. doi:10.1371/journal.pone.0097963Blanca, J., Cañizares, J., Roig, C., Ziarsolo, P., Nuez, F., & Picó, B. (2011). Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics, 12(1). doi:10.1186/1471-2164-12-104Esteras, C., Gomez, P., Monforte, A. J., Blanca, J., Vicente-Dolera, N., Roig, C., … Pico, B. (2012). High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics, 13(1), 80. doi:10.1186/1471-2164-13-80Vicente-Dólera, N., Pinillos, V., Moya, M., Del Río-Celestino, M., Pomares-Viciana, T., Román, B., & Gómez, P. (2014). An improved method to obtain novel mutants in Cucurbita pepo by pollen viability. Scientia Horticulturae, 169, 14-19. doi:10.1016/j.scienta.2014.01.045Martín, B., Ramiro, M., Martínez-Zapater, J. M., & Alonso-Blanco, C. (2009). A high-density collection of EMS-induced mutations for TILLING in Landsberg erecta genetic background of Arabidopsis. BMC Plant Biology, 9(1), 147. doi:10.1186/1471-2229-9-147Wienholds, E. (2003). Efficient Target-Selected Mutagenesis in Zebrafish. Genome Research, 13(12), 2700-2707. doi:10.1101/gr.1725103Dalmais, M., Schmidt, J., Le Signor, C., Moussy, F., Burstin, J., Savois, V., … Bendahmane, A. (2008). UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biology, 9(2), R43. doi:10.1186/gb-2008-9-2-r43Triques, K., Sturbois, B., Gallais, S., Dalmais, M., Chauvin, S., Clepet, C., … Bendahmane, A. (2007). Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. The Plant Journal, 51(6), 1116-1125. doi:10.1111/j.1365-313x.2007.03201.xTaylor, N. E. (2003). PARSESNP: a tool for the analysis of nucleotide polymorphisms. Nucleic Acids Research, 31(13), 3808-3811. doi:10.1093/nar/gkg574Ng, P. C. (2003). SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812-3814. doi:10.1093/nar/gkg509Obrero, Á., González-Verdejo, C. I., Die, J. V., Gómez, P., Del Río-Celestino, M., & Román, B. (2013). Carotenogenic Gene Expression and Carotenoid Accumulation in Three Varieties of Cucurbita pepo during Fruit Development. Journal of Agricultural and Food Chemistry, 61(26), 6393-6403. doi:10.1021/jf4004576Cosio, C., Vuillemin, L., De Meyer, M., Kevers, C., Penel, C., & Dunand, C. (2009). An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. Planta, 229(4), 823-836. doi:10.1007/s00425-008-0876-0Sisko, M. (2003). Genome size analysis in the genus Cucurbita and its use for determination of interspecific hybrids obtained using the embryo-rescue technique. Plant Science, 165(3), 663-669. doi:10.1016/s0168-9452(03)00256-5Campa A (1991) Biological roles of plant peroxidases: known and potential function. In Peroxidases in Chemistry and Biology Vol. II. (Everse, J., Everse, K.E. & Grisham, M.B., eds), pp. 25–50, CRC Press, Boca Raton, FL.Schuller, D. J., Ban, N., van Huystee, R. B., McPherson, A., & Poulos, T. L. (1996). The crystal structure of peanut peroxidase. Structure, 4(3), 311-321. doi:10.1016/s0969-2126(96)00035-4Stephenson, P., Baker, D., Girin, T., Perez, A., Amoah, S., King, G. J., & Østergaard, L. (2010). A rich TILLING resource for studying gene function in Brassica rapa. BMC Plant Biology, 10(1), 62. doi:10.1186/1471-2229-10-62Suzuki, T., Eiguchi, M., Kumamaru, T., Satoh, H., Matsusaka, H., Moriguchi, K., … Kurata, N. (2007). MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Molecular Genetics and Genomics, 279(3), 213-223. doi:10.1007/s00438-007-0293-2Chantreau, M., Grec, S., Gutierrez, L., Dalmais, M., Pineau, C., Demailly, H., … Hawkins, S. (2013). PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics. BMC Plant Biology, 13(1), 159. doi:10.1186/1471-2229-13-159Rawat, N., Sehgal, S. K., Joshi, A., Rothe, N., Wilson, D. L., McGraw, N., … Gill, B. S. (2012). A diploid wheat TILLING resource for wheat functional genomics. BMC Plant Biology, 12(1), 205. doi:10.1186/1471-2229-12-205Minoia, S., Petrozza, A., D’Onofrio, O., Piron, F., Mosca, G., Sozio, G., … Carriero, F. (2010). A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Research Notes, 3(1). doi:10.1186/1756-0500-3-69Markiewicz, P., Kleina, L. G., Cruz, C., Ehret, S., & Miller, J. H. (1994). Genetic Studies of the lac Repressor. XIV. Analysis of 4000 Altered Escherichia coli lac Repressors Reveals Essential and Non-essential Residues, as well as «Spacers» which do not Require a Specific Sequence. Journal of Molecular Biology, 240(5), 421-433. doi:10.1006/jmbi.1994.1458Carpin, S., Crèvecoeur, M., Greppin, H., & Penel, C. (1999). Molecular Cloning and Tissue-Specific Expression of an Anionic Peroxidase in Zucchini. Plant Physiology, 120(3), 799-810. doi:10.1104/pp.120.3.799Welinder, K. G., Justesen, A. F., Kjaersgård, I. V. H., Jensen, R. B., Rasmussen, S. K., Jespersen, H. M., & Duroux, L. (2002). Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. European Journal of Biochemistry, 269(24), 6063-6081. doi:10.1046/j.1432-1033.2002.03311.

    Variability in seed storage components (protein, oil and fatty acids) in a Camellia germplasm collection

    No full text
    Trabajo presentado en el International Camellia Congress, celebrado en Pontevedra del 11 al 16 de marzo de 2014The genus Camellia is native to East Asia and includes a very large number (>200) of species. Notable among them are C. japonica, C. sinensis, C. sasanqua, C. reticulata and C. oleifera. The Japanese camellia tree (C. japonica) is native to Southern Japan where it is called Rose of Winter. Camellia sasanqua (Christmas Camellia) is a Camellia species native to China and Japan. Although Camellia is known worldwide for the production of tea, there is a growing industry that uses the oil derived from camellia seeds. Camellia oil, extracted from a number of different species including C. japonica, C. reticulata, C. sinensis and C. oleifera, has long been processed as industrial oil, for the production of medicines, cosmetics, soaps, and recently it is generating interest as a biofuel source (Lin and Fan, 2011). Camellia tea seeds have been utilized in China for more than a thousand years as an oil source. Tea oil is the main cooking oil in China’s southern provinces and Southeast Asia. Camellia oil is considered a high quality cooking oil, with high amounts of unsaturated fatty acids, mainly oleic and linoleic acids. This oil, called the Eastern olive oil by Long and Wang (2008) because it contains abundant oleic acid like olive oil, can be stored at room temperature. In addition to this, camellia oil is reputed to aid cholesterol reduction and resistance to stress (Fu & Zhou, 2003) and to protect against lipid peroxidation by elevating the expression of antioxidant enzymes (Lee et al. 2007). Camellia japonica oil has a long history of use as a cosmetic product to keep skin and hair healthy, with antibacterial activity and with anti-inflammatory properties (Kim et al. 2001, Kim et al. 2012). Also the antioxidant and antimicrobial features of virgin C. oleifera, C. reticulata and C. sasanqua oils have recently been demonstrated (Feas et al. 2013). The high oil content, (>30%) of Camellia seeds can vary depending on genetic and environmental factors (species, cultivars, temperature, rainfall, etc). Furthermore, fruit traits such as seed size and dry weight affect oil production in Camellia species (Li et al., 1992; Yanru and Zhangju, 2010, Huang et al. 2013). Galicia (NW Spain) is one of the most important Camellia producing-regions in Europe. Although camellias in Galicia are produced mainly as houseplants and for gardening purposes, recently interest has arisen in relation to the production of oil as a new market opportunity. The aims of this work were: a) to study the chemical composition of seeds from different Camellia species grown in a live Camellia germplasm collection maintained at the Estacion Fitopatoloxica do Areeiro, in NW Spain, and b) to characterize the fatty acid composition of cold-pressed oil samples from different Camellia species produced at the E.F. do Areeiro.Peer Reviewe

    Glucosinolate assessment in Brassica oleracea

    No full text

    Sustainable Fertilization in Medicinal and Aromatic Plants

    No full text
    The nutrient level in the soil is one of the most investigated aspects of agricultural research, also including research into Medicinal and Aromatic plants. The effect of fertilization has been studied in detail for many species, with contrasting results as concerns above all the qualitative aspects of production. Generally speaking, an increased level of nutrients induces an enhancement of plant biomass, but when the goal of cultivation is different from herbage yield, i.e. when a special plant part (seeds, or roots, or flowers) is of interest, or when the quality features are especially important, the outcome of fertilization may be dramatically different. A fine-tuned fertilization practice is therefore necessary, and forms, rates and times of distribution of fertilizers must be accurately planned and managed
    corecore