21 research outputs found

    The predictive significance of CD20 expression in B-cell lymphomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In our recent study, we determined the cut-off value of CD20 expression at the level of 25 000 molecules of equivalent soluble fluorochrome (MESF) to be the predictor of response to rituximab containing treatment in patients with B-cell lymphomas. In 17.5% of patients, who had the level of CD20 expression below the cut-off value, the response to rituximab containing treatment was significantly worse than in the rest of the patients with the level of CD20 expression above the cut-off value. The proportion of patients with low CD20 expression who might not benefit from rituximab containing treatment was not necessarily representative. Therefore the aim of this study was to quantify the CD20 expression in a larger series of patients with B-cell lymphomas which might allow us to determine more reliably the proportion of patients with the CD20 expression below the cut-off.</p> <p>Methods</p> <p>Cytological samples of 64 diffuse large B-cell lymphomas (DLBCL), 56 follicular lymphomas (FL), 31 chronic lymphocytic leukemias (CLL), 34 mantle cell lymphomas (MCL), 18 marginal zone lymphomas (MZL) and 15 B-cell lymphomas unclassified were analyzed for CD20 expression by quantitative four-color flow cytometric measurements using FACSCalibur flow cytometer (BD Biosciences).</p> <p>Results</p> <p>The range of CD20 expression in different B-cell lymphomas was very broad, varying from 2 737 to 115 623 MESF in CLL and 3 549 to 679 577 MESF in DLBCL. However, when we compared the CD20 expression in the groups of patients with DLBCL, FL, MCL, MZL, CLL and B-cell lymphomas unclassified, it was found to be significantly lower (p = 0.002) only in CLL but did not significantly differ in other lymphoma types (p = NS). Fifty-three out of 218 (24.3%) patients with B-cell lymphomas had the CD20 expression below the cut-off value.</p> <p>Conclusions</p> <p>The CD20 expression in CLL is significantly lower than in most histological types of mature B-cell lymphomas in which it appears to be comparable. Approximately 25% of B-cell lymphoma patients have the CD20 expression below the cut-off value showing that the low CD20 expression might be more common than presumed from our previous study.</p

    Breast cancer survival in the US and Europe: a CONCORD high-resolution study.

    Get PDF
    Breast cancer survival is reportedly higher in the US than in Europe. The first worldwide study (CONCORD) found wide international differences in age-standardized survival. The aim of this study is to explain these survival differences. Population-based data on stage at diagnosis, diagnostic procedures, treatment and follow-up were collected for about 20,000 women diagnosed with breast cancer aged 15-99 years during 1996-98 in 7 US states and 12 European countries. Age-standardized net survival and the excess hazard of death up to 5 years after diagnosis were estimated by jurisdiction (registry, country, European region), age and stage with flexible parametric models. Breast cancers were generally less advanced in the US than in Europe. Stage also varied less between US states than between European jurisdictions. Early, node-negative tumors were more frequent in the US (39%) than in Europe (32%), while locally advanced tumors were twice as frequent in Europe (8%), and metastatic tumors of similar frequency (5-6%). Net survival in Northern, Western and Southern Europe (81-84%) was similar to that in the US (84%), but lower in Eastern Europe (69%). For the first 3 years after diagnosis the mean excess hazard was higher in Eastern Europe than elsewhere: the difference was most marked for women aged 70-99 years, and mainly confined to women with locally advanced or metastatic tumors. Differences in breast cancer survival between Europe and the US in the late 1990s were mainly explained by lower survival in Eastern Europe, where low healthcare expenditure may have constrained the quality of treatment

    Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2)

    Get PDF
    BACKGROUND: Worldwide data for cancer survival are scarce. We aimed to initiate worldwide surveillance of cancer survival by central analysis of population-based registry data, as a metric of the effectiveness of health systems, and to inform global policy on cancer control. METHODS: Individual tumour records were submitted by 279 population-based cancer registries in 67 countries for 25·7 million adults (age 15-99 years) and 75,000 children (age 0-14 years) diagnosed with cancer during 1995-2009 and followed up to Dec 31, 2009, or later. We looked at cancers of the stomach, colon, rectum, liver, lung, breast (women), cervix, ovary, and prostate in adults, and adult and childhood leukaemia. Standardised quality control procedures were applied; errors were corrected by the registry concerned. We estimated 5-year net survival, adjusted for background mortality in every country or region by age (single year), sex, and calendar year, and by race or ethnic origin in some countries. Estimates were age-standardised with the International Cancer Survival Standard weights. FINDINGS: 5-year survival from colon, rectal, and breast cancers has increased steadily in most developed countries. For patients diagnosed during 2005-09, survival for colon and rectal cancer reached 60% or more in 22 countries around the world; for breast cancer, 5-year survival rose to 85% or higher in 17 countries worldwide. Liver and lung cancer remain lethal in all nations: for both cancers, 5-year survival is below 20% everywhere in Europe, in the range 15-19% in North America, and as low as 7-9% in Mongolia and Thailand. Striking rises in 5-year survival from prostate cancer have occurred in many countries: survival rose by 10-20% between 1995-99 and 2005-09 in 22 countries in South America, Asia, and Europe, but survival still varies widely around the world, from less than 60% in Bulgaria and Thailand to 95% or more in Brazil, Puerto Rico, and the USA. For cervical cancer, national estimates of 5-year survival range from less than 50% to more than 70%; regional variations are much wider, and improvements between 1995-99 and 2005-09 have generally been slight. For women diagnosed with ovarian cancer in 2005-09, 5-year survival was 40% or higher only in Ecuador, the USA, and 17 countries in Asia and Europe. 5-year survival for stomach cancer in 2005-09 was high (54-58%) in Japan and South Korea, compared with less than 40% in other countries. By contrast, 5-year survival from adult leukaemia in Japan and South Korea (18-23%) is lower than in most other countries. 5-year survival from childhood acute lymphoblastic leukaemia is less than 60% in several countries, but as high as 90% in Canada and four European countries, which suggests major deficiencies in the management of a largely curable disease. INTERPRETATION: International comparison of survival trends reveals very wide differences that are likely to be attributable to differences in access to early diagnosis and optimum treatment. Continuous worldwide surveillance of cancer survival should become an indispensable source of information for cancer patients and researchers and a stimulus for politicians to improve health policy and health-care systems

    Worldwide comparison of survival from childhood leukaemia for 1995–2009, by subtype, age, and sex (CONCORD-2): a population-based study of individual data for 89 828 children from 198 registries in 53 countries

    Get PDF
    Background Global inequalities in access to health care are reflected in differences in cancer survival. The CONCORD programme was designed to assess worldwide differences and trends in population-based cancer survival. In this population-based study, we aimed to estimate survival inequalities globally for several subtypes of childhood leukaemia. Methods Cancer registries participating in CONCORD were asked to submit tumour registrations for all children aged 0-14 years who were diagnosed with leukaemia between Jan 1, 1995, and Dec 31, 2009, and followed up until Dec 31, 2009. Haematological malignancies were defined by morphology codes in the International Classification of Diseases for Oncology, third revision. We excluded data from registries from which the data were judged to be less reliable, or included only lymphomas, and data from countries in which data for fewer than ten children were available for analysis. We also excluded records because of a missing date of birth, diagnosis, or last known vital status. We estimated 5-year net survival (ie, the probability of surviving at least 5 years after diagnosis, after controlling for deaths from other causes [background mortality]) for children by calendar period of diagnosis (1995-99, 2000-04, and 2005-09), sex, and age at diagnosis (< 1, 1-4, 5-9, and 10-14 years, inclusive) using appropriate life tables. We estimated age-standardised net survival for international comparison of survival trends for precursor-cell acute lymphoblastic leukaemia (ALL) and acute myeloid leukaemia (AML). Findings We analysed data from 89 828 children from 198 registries in 53 countries. During 1995-99, 5-year agestandardised net survival for all lymphoid leukaemias combined ranged from 10.6% (95% CI 3.1-18.2) in the Chinese registries to 86.8% (81.6-92.0) in Austria. International differences in 5-year survival for childhood leukaemia were still large as recently as 2005-09, when age-standardised survival for lymphoid leukaemias ranged from 52.4% (95% CI 42.8-61.9) in Cali, Colombia, to 91.6% (89.5-93.6) in the German registries, and for AML ranged from 33.3% (18.9-47.7) in Bulgaria to 78.2% (72.0-84.3) in German registries. Survival from precursor-cell ALL was very close to that of all lymphoid leukaemias combined, with similar variation. In most countries, survival from AML improved more than survival from ALL between 2000-04 and 2005-09. Survival for each type of leukaemia varied markedly with age: survival was highest for children aged 1-4 and 5-9 years, and lowest for infants (younger than 1 year). There was no systematic difference in survival between boys and girls. Interpretation Global inequalities in survival from childhood leukaemia have narrowed with time but remain very wide for both ALL and AML. These results provide useful information for health policy makers on the effectiveness of health-care systems and for cancer policy makers to reduce inequalities in childhood survival

    Lancet

    Get PDF
    BACKGROUND: In 2015, the second cycle of the CONCORD programme established global surveillance of cancer survival as a metric of the effectiveness of health systems and to inform global policy on cancer control. CONCORD-3 updates the worldwide surveillance of cancer survival to 2014. METHODS: CONCORD-3 includes individual records for 37.5 million patients diagnosed with cancer during the 15-year period 2000-14. Data were provided by 322 population-based cancer registries in 71 countries and territories, 47 of which provided data with 100% population coverage. The study includes 18 cancers or groups of cancers: oesophagus, stomach, colon, rectum, liver, pancreas, lung, breast (women), cervix, ovary, prostate, and melanoma of the skin in adults, and brain tumours, leukaemias, and lymphomas in both adults and children. Standardised quality control procedures were applied; errors were rectified by the registry concerned. We estimated 5-year net survival. Estimates were age-standardised with the International Cancer Survival Standard weights. FINDINGS: For most cancers, 5-year net survival remains among the highest in the world in the USA and Canada, in Australia and New Zealand, and in Finland, Iceland, Norway, and Sweden. For many cancers, Denmark is closing the survival gap with the other Nordic countries. Survival trends are generally increasing, even for some of the more lethal cancers: in some countries, survival has increased by up to 5% for cancers of the liver, pancreas, and lung. For women diagnosed during 2010-14, 5-year survival for breast cancer is now 89.5% in Australia and 90.2% in the USA, but international differences remain very wide, with levels as low as 66.1% in India. For gastrointestinal cancers, the highest levels of 5-year survival are seen in southeast Asia: in South Korea for cancers of the stomach (68.9%), colon (71.8%), and rectum (71.1%); in Japan for oesophageal cancer (36.0%); and in Taiwan for liver cancer (27.9%). By contrast, in the same world region, survival is generally lower than elsewhere for melanoma of the skin (59.9% in South Korea, 52.1% in Taiwan, and 49.6% in China), and for both lymphoid malignancies (52.5%, 50.5%, and 38.3%) and myeloid malignancies (45.9%, 33.4%, and 24.8%). For children diagnosed during 2010-14, 5-year survival for acute lymphoblastic leukaemia ranged from 49.8% in Ecuador to 95.2% in Finland. 5-year survival from brain tumours in children is higher than for adults but the global range is very wide (from 28.9% in Brazil to nearly 80% in Sweden and Denmark). INTERPRETATION: The CONCORD programme enables timely comparisons of the overall effectiveness of health systems in providing care for 18 cancers that collectively represent 75% of all cancers diagnosed worldwide every year. It contributes to the evidence base for global policy on cancer control. Since 2017, the Organisation for Economic Co-operation and Development has used findings from the CONCORD programme as the official benchmark of cancer survival, among their indicators of the quality of health care in 48 countries worldwide. Governments must recognise population-based cancer registries as key policy tools that can be used to evaluate both the impact of cancer prevention strategies and the effectiveness of health systems for all patients diagnosed with cancer. FUNDING: American Cancer Society; Centers for Disease Control and Prevention; Swiss Re; Swiss Cancer Research foundation; Swiss Cancer League; Institut National du Cancer; La Ligue Contre le Cancer; Rossy Family Foundation; US National Cancer Institute; and the Susan G Komen Foundation

    Changing geographical patterns and trends in cancer incidence in children and adolescents in Europe, 1991–2010 (Automated Childhood Cancer Information System): a population-based study

    Get PDF
    Background: A deceleration in the increase in cancer incidence in children and adolescents has been reported in several national and regional studies in Europe. Based on a large database representing 1·3 billion person-years over the period 1991–2010, we provide a consolidated report on cancer incidence trends at ages 0–19 years. Methods: We invited all population-based cancer registries operating in European countries to participate in this population-based registry study. We requested a listing of individual records of cancer cases, including sex, age, date of birth, date of cancer diagnosis, tumour sequence number, primary site, morphology, behaviour, and the most valid basis of diagnosis. We also requested population counts in each calendar year by sex and age for the registration area, from official national sources, and specific information about the covered area and registration practices. An eligible registry could become a contributor if it provided quality data for all complete calendar years in the period 1991–2010. Incidence rates and the average annual percentage change with 95% CIs were reported for all cancers and major diagnostic groups, by region and overall, separately for children (age 0–14 years) and adolescents (age 15–19 years). We examined and quantified the stability of the trends with joinpoint analyses. Findings: For the years 1991–2010, 53 registries in 19 countries contributed a total of 180 335 unique cases. We excluded 15 162 (8·4%) of 180 335 cases due to differing practices of registration, and considered the quality indicators for the 165 173 cases included to be satisfactory. The average annual age-standardised incidence was 137·5 (95% CI 136·7–138·3) per million person-years and incidence increased significantly by 0·54% (0·44–0·65) per year in children (age 0–14 years) with no change in trend. In adolescents, the combined European incidence was 176·2 (174·4–178·0) per million person-years based on all 35 138 eligible cases and increased significantly by 0·96% (0·73–1·19) per year, although recent changes in rates among adolescents suggest a deceleration in this increasing trend. We observed temporal variations in trends by age group, geographical region, and diagnostic group. The combined age-standardised incidence of leukaemia based on 48 458 cases in children was 46·9 (46·5–47·3) per million person-years and increased significantly by 0·66% (0·48–0·84) per year. The average overall incidence of leukaemia in adolescents was 23·6 (22·9–24·3) per million person-years, based on 4702 cases, and the average annual change was 0·93% (0·49–1·37). We also observed increasing incidence of lymphoma in adolescents (average annual change 1·04% [0·65–1·44], malignant CNS tumours in children (average annual change 0·49% [0·20–0·77]), and other tumours in both children (average annual change 0·56 [0·40–0·72]) and adolescents (average annual change 1·17 [0·82–1·53]). Interpretation: Improvements in the diagnosis and registration of cancers over time could partly explain the observed increase in incidence, although some changes in underlying putative risk factors cannot be excluded. Cancer incidence trends in this young population require continued monitoring at an international level. Funding: Federal Ministry of Health of the Federal German Government, the European Union's Seventh Framework Programme, and International Agency for Research on Cancer

    Breast cancer incidence trends in European women aged 20-39 years at diagnosis

    No full text
    An increase in the incidence of breast cancer in women aged<40 years has been reported in recent years. Increased incidence could be partly explained by subtle detection biases, but the role of other risk factors cannot be ruled out. The purpose of the present study was to investigate the changes in temporal trends in breast cancer incidence in European women aged 20-39 years at diagnosis. Age specific breast cancer incidence rates for 17 European Cancer Registries were retrieved for the calendar period 1995-2006. Cancer registries data were pooled to reduce annual fluctuations present in single registries and increase incidence rates stability. Regression models were fitted to the data assuming that the number of cancer cases followed the Poisson distribution. Mean annual changes in the incidence rate (AIC) across the considered time window were calculated. The AIC estimated from all European registries was 1.032 (95% CI=1.019-1.045) and 1.014 (95% CI=1.010-1.018) in women aged 20-29 and 30-39 years old at diagnosis, respectively. The major change was detected among women aged 25-29 years at diagnosis: AIC=1.033 (95% CI=1.020-1.046). The upward trend was not affected when registries with high or low AIC were removed from the analysis (sensitivity analysis). Our findings support the presence of an increase in the incidence of breast cancer in European women in their 20s and 30s during the decade 1995-2006. The interpretation of the observed increase is not straightforward since a number of factors may have affected our results. The estimated annual increase in breast cancer incidence may result in a burden of the disease that is important in terms of public health and deserves further investigation of possible risk factors

    Trends in incidence and predictions of cutaneous melanoma across Europe up to 2015

    No full text
    Melanoma is a significant health problem in Caucasian populations. The most recently available data from cancer registries often have a delay of several months up to a few years and they are generally not easily accessible
    corecore