575 research outputs found

    Fault tree analysis for system modeling in case of intentional EMI

    Get PDF
    The complexity of modern systems on the one hand and the rising threat of intentional electromagnetic interference (IEMI) on the other hand increase the necessity for systematical risk analysis. Most of the problems can not be treated deterministically since slight changes in the configuration (source, position, polarization, ...) can dramatically change the outcome of an event. For that purpose, methods known from probabilistic risk analysis can be applied. One of the most common approaches is the fault tree analysis (FTA). The FTA is used to determine the system failure probability and also the main contributors to its failure. In this paper the fault tree analysis is introduced and a possible application of that method is shown using a small computer network as an example. The constraints of this methods are explained and conclusions for further research are drawn

    Low-dose intra-arterial contrast-enhanced MR aortography in patients based on a theoretically derived injection protocol

    Get PDF
    Multiple intra-arterial contrast agent injections are necessary during MR-guided endovascular interventions. In respect to the approved limits of maximum daily gadolinium dose, a low-dose injection protocol is mandatory. The objective of this study was to derive and apply a low-dose injection protocol for intra-arterial 3D contrast-enhanced MR aortography in patients. Injection rate (Qinj), concentration of injected gadolinium [Gd]inj and aortal blood flow rate (Qblood) were included for the theoretical evaluation of signal intensity (SI) of the arterial lumen. SI simulations were carried out at Qinj=2 versus 4ml/s in the [Gd]inj range between 0-500mM. Qinj and [Gd]inj with SI above the 75% threshold of the maximal SI were regarded as optimal injection parameters. [Gd]inj=50mM and Qinj=4ml/s were considered as optimal and were administered in five patients for 3D MR aortography. All images revealed clear delineation of the abdominal aorta and its major branches. Mean±SD of contrast-to-noise ratios of the abdominal aorta, common iliac and renal artery were 70.2±15.2, 58.6±12.3 and 67.4±12.3. Approximately seven intra-aortal injections would be permissible in patients during MR-guided interventions without exceeding the maximal dose of gadoliniu

    Monte Carlo Procedure for Protein Design

    Full text link
    A new method for sequence optimization in protein models is presented. The approach, which has inherited its basic philosophy from recent work by Deutsch and Kurosky [Phys. Rev. Lett. 76, 323 (1996)] by maximizing conditional probabilities rather than minimizing energy functions, is based upon a novel and very efficient multisequence Monte Carlo scheme. By construction, the method ensures that the designed sequences represent good folders thermodynamically. A bootstrap procedure for the sequence space search is devised making very large chains feasible. The algorithm is successfully explored on the two-dimensional HP model with chain lengths N=16, 18 and 32.Comment: 7 pages LaTeX, 4 Postscript figures; minor change

    Identification of Amino Acid Sequences with Good Folding Properties in an Off-Lattice Model

    Full text link
    Folding properties of a two-dimensional toy protein model containing only two amino-acid types, hydrophobic and hydrophilic, respectively, are analyzed. An efficient Monte Carlo procedure is employed to ensure that the ground states are found. The thermodynamic properties are found to be strongly sequence dependent in contrast to the kinetic ones. Hence, criteria for good folders are defined entirely in terms of thermodynamic fluctuations. With these criteria sequence patterns that fold well are isolated. For 300 chains with 20 randomly chosen binary residues approximately 10% meet these criteria. Also, an analysis is performed by means of statistical and artificial neural network methods from which it is concluded that the folding properties can be predicted to a certain degree given the binary numbers characterizing the sequences.Comment: 15 pages, 8 Postscript figures. Minor change

    Geometric representations for minimalist grammars

    Full text link
    We reformulate minimalist grammars as partial functions on term algebras for strings and trees. Using filler/role bindings and tensor product representations, we construct homomorphisms for these data structures into geometric vector spaces. We prove that the structure-building functions as well as simple processors for minimalist languages can be realized by piecewise linear operators in representation space. We also propose harmony, i.e. the distance of an intermediate processing step from the final well-formed state in representation space, as a measure of processing complexity. Finally, we illustrate our findings by means of two particular arithmetic and fractal representations.Comment: 43 pages, 4 figure

    Privacy in crowdsourcing:a systematic review

    Get PDF
    The advent of crowdsourcing has brought with it multiple privacy challenges. For example, essential monitoring activities, while necessary and unavoidable, also potentially compromise contributor privacy. We conducted an extensive literature review of the research related to the privacy aspects of crowdsourcing. Our investigation revealed interesting gender differences and also differences in terms of individual perceptions. We conclude by suggesting a number of future research directions.</p

    Wikipedia vandalism detection: combining natural language, metadata, and reputation features

    Get PDF
    Wikipedia is an online encyclopedia which anyone can edit. While most edits are constructive, about 7% are acts of vandalism. Such behavior is characterized by modifications made in bad faith; introducing spam and other inappropriate content. In this work, we present the results of an effort to integrate three of the leading approaches to Wikipedia vandalism detection: a spatio-temporal analysis of metadata (STiki), a reputation-based system (WikiTrust), and natural language processing features. The performance of the resulting joint system improves the state-of-the-art from all previous methods and establishes a new baseline for Wikipedia vandalism detection. We examine in detail the contribution of the three approaches, both for the task of discovering fresh vandalism, and for the task of locating vandalism in the complete set of Wikipedia revisions.The authors from Universitat Politècnica de València thank also the MICINN research project TEXT-ENTERPRISE 2.0 TIN2009-13391-C04-03 (Plan I+D+i). UPenn contributions were supported in part by ONR MURI N00014-07-1-0907. This research was partially supported by award 1R01GM089820-01A1 from the National Institute Of General Medical Sciences, and by ISSDM, a UCSC-LANL educational collaboration.Adler, BT.; Alfaro, LD.; Mola Velasco, SM.; Rosso, P.; West, AG. (2011). Wikipedia vandalism detection: combining natural language, metadata, and reputation features. En Computational Linguistics and Intelligent Text Processing. Springer Verlag (Germany). 6609:277-288. https://doi.org/10.1007/978-3-642-19437-5_23S2772886609Wikimedia Foundation: Wikipedia (2010) [Online; accessed December 29, 2010]Wikimedia Foundation: Wikistats (2010) [Online; accessed December 29, 2010]Potthast, M.: Crowdsourcing a Wikipedia Vandalism Corpus. In: Proc. of the 33rd Intl. ACM SIGIR Conf. (SIGIR 2010). ACM Press, New York (July 2010)Gralla, P.: U.S. senator: It’s time to ban Wikipedia in schools, libraries, http://blogs.computerworld.com/4598/u_s_senator_its_time_to_ban_wikipedia_in_schools_libraries [Online; accessed November 15, 2010]Olanoff, L.: School officials unite in banning Wikipedia. Seattle Times (November 2007)Mola-Velasco, S.M.: Wikipedia Vandalism Detection Through Machine Learning: Feature Review and New Proposals. In: Braschler, M., Harman, D. (eds.) Notebook Papers of CLEF 2010 LABs and Workshops, Padua, Italy, September 22-23 (2010)Adler, B., de Alfaro, L., Pye, I.: Detecting Wikipedia Vandalism using WikiTrust. In: Braschler, M., Harman, D. (eds.) Notebook Papers of CLEF 2010 LABs and Workshops, Padua, Italy, September 22-23 (2010)West, A.G., Kannan, S., Lee, I.: Detecting Wikipedia Vandalism via Spatio-Temporal Analysis of Revision Metadata. In: EUROSEC 2010: Proceedings of the Third European Workshop on System Security, pp. 22–28 (2010)West, A.G.: STiki: A Vandalism Detection Tool for Wikipedia (2010), http://en.wikipedia.org/wiki/Wikipedia:STikiWikipedia: User: AntiVandalBot – Wikipedia, http://en.wikipedia.org/wiki/User:AntiVandalBot (2010) [Online; accessed November 2, 2010]Wikipedia: User:MartinBot – Wikipedia (2010), http://en.wikipedia.org/wiki/User:MartinBot [Online; accessed November 2, 2010]Wikipedia: User:ClueBot – Wikipedia (2010), http://en.wikipedia.org/wiki/User:ClueBot [Online; accessed November 2, 2010]Carter, J.: ClueBot and Vandalism on Wikipedia (2008), http://www.acm.uiuc.edu/~carter11/ClueBot.pdf [Online; accessed November 2, 2010]Rodríguez Posada, E.J.: AVBOT: detección y corrección de vandalismos en Wikipedia. NovATIca (203), 51–53 (2010)Potthast, M., Stein, B., Gerling, R.: Automatic Vandalism Detection in Wikipedia. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 663–668. Springer, Heidelberg (2008)Smets, K., Goethals, B., Verdonk, B.: Automatic Vandalism Detection in Wikipedia: Towards a Machine Learning Approach. In: WikiAI 2008: Proceedings of the Workshop on Wikipedia and Artificial Intelligence: An Evolving Synergy, pp. 43–48. AAAI Press, Menlo Park (2008)Druck, G., Miklau, G., McCallum, A.: Learning to Predict the Quality of Contributions to Wikipedia. In: WikiAI 2008: Proceedings of the Workshop on Wikipedia and Artificial Intelligence: An Evolving Synergy, pp. 7–12. AAAI Press, Menlo Park (2008)Itakura, K.Y., Clarke, C.L.: Using Dynamic Markov Compression to Detect Vandalism in the Wikipedia. In: SIGIR 2009: Proc. of the 32nd Intl. ACM Conference on Research and Development in Information Retrieval, pp. 822–823 (2009)Chin, S.C., Street, W.N., Srinivasan, P., Eichmann, D.: Detecting Wikipedia Vandalism with Active Learning and Statistical Language Models. In: WICOW 2010: Proc. of the 4th Workshop on Information Credibility on the Web (April 2010)Zeng, H., Alhoussaini, M., Ding, L., Fikes, R., McGuinness, D.: Computing Trust from Revision History. In: Intl. Conf. on Privacy, Security and Trust (2006)McGuinness, D., Zeng, H., da Silva, P., Ding, L., Narayanan, D., Bhaowal, M.: Investigation into Trust for Collaborative Information Repositories: A Wikipedia Case Study. In: Proc. of the Workshop on Models of Trust for the Web (2006)Adler, B., de Alfaro, L.: A Content-Driven Reputation System for the Wikipedia. In: WWW 2007: Proceedings of the 16th International World Wide Web Conference. ACM Press, New York (2007)Belani, A.: Vandalism Detection in Wikipedia: a Bag-of-Words Classifier Approach. Computing Research Repository (CoRR) abs/1001.0700 (2010)Potthast, M., Stein, B., Holfeld, T.: Overview of the 1st International Competition on Wikipedia Vandalism Detection. In: Braschler, M., Harman, D. (eds.) Notebook Papers of CLEF 2010 LABs and Workshops, Padua, Italy, September 22-23 (2010)Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC curves. In: ICML 2006: Proc. of the 23rd Intl. Conf. on Machine Learning (2006
    corecore