245 research outputs found

    Septins localize to microtubules during nutritional limitation in Saccharomyces cerevisiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In <it>Saccharomyces cerevisiae</it>, nutrient limitation stimulates diploid cells to undergo DNA replication and meiosis, followed by the formation of four haploid spores. Septins are a family of proteins that assemble a ring structure at the mother-daughter neck during vegetative growth, where they control cytokinesis. In sporulating cells, the septin ring disassembles and septins relocalize to the prospore membrane.</p> <p>Results</p> <p>Here, we demonstrate that nutrient limitation triggers a change in the localization of at least two vegetative septins (Cdc10 and Cdc11) from the bud neck to the microtubules. The association of Cdc10 and Cdc11 with microtubules persists into meiosis, and they are found associated with the meiotic spindle until the end of meiosis II. In addition, the meiosis-specific septin Spr28 displays similar behavior, suggesting that this is a common feature of septins. Septin association to microtubules is a consequence of the nutrient limitation signal, since it is also observed when haploid cells are incubated in sporulation medium and when haploid or diploid cells are grown in medium containing non-fermentable carbon sources. Moreover, during meiosis II, when the nascent prospore membrane is formed, septins moved from the microtubules to this membrane. Proper organization of the septins on the membrane requires the sporulation-specific septins Spr3 and Spr28.</p> <p>Conclusion</p> <p>Nutrient limitation in <it>S. cerevisiae </it>triggers the sporulation process, but it also induces the disassembly of the septin bud neck ring and relocalization of the septin subunits to the nucleus. Septins remain associated with microtubules during the meiotic divisions and later, during spore morphogenesis, they are detected associated to the nascent prospore membranes surrounding each nuclear lobe. Septin association to microtubules also occurs during growth in non-fermentable carbon sources.</p

    Learning of the Object Oriented Paradigm Through Interactive Video-Games Development

    Get PDF
    The Object Orientation Paradigm (OOP) is more than Object Oriented languages. Learning the syntax of a language as C++ or Java is a relatively easy task compared with the understanding of the principles of OO Modeling and Design (OOD), which require a high ability of abstract reasoning. Moreover, it is not enough to teach the artifacts of Computer Aided Software Engineering (CASE) as the Unified Modeling Language (UML) if those principles are not properly understood. We wanted to engage the students in a motivating framework, so both the principles of OOD are properly acquired and put in practice with CASE and programming tools

    Reseñas

    Get PDF

    Diseño y construcción de un anillo de sensores ultrasónicos para el levantamiento de mapas de entorno y generación de trayectorias

    Get PDF
    Se describe el diseño y la construcción de un anillo de sensores ultrasónicos, el cual se utilizará en una plataforma móvil para obtener la lectura de las distancias del escenario que circunda a la plataforma mientras ésta se desplaza. Se describe también la implementación de algoritmos para corregir los fenómenos de Crosstalk y falsos ecos, obtener medidas de distancia de alta confiabilidad

    Synthetic Photoswitchable Neurotransmitters Based on Bridged Azobenzenes

    Get PDF
    Photoswitchable neurotransmitters of ionotropic kainate receptors were synthesized by tethering a glutamate moiety to disubstituted C2-bridged azobenzenes, which were prepared through a novel methodology that allows access to diazocines with higher yields and versatility. Because of the singular properties of these photochromes, photoisomerizable compounds were obtained with larger thermal stability for their inert cis isomer than for their biologically activity trans state. This enabled selective neuronal firing upon irradiation without background activity in the dark

    Effect of an early neurocognitive rehabilitation on autonomic nervous system in critically ill patients

    Get PDF
    Introduction Recent clinical and electrophysiological studies reveal a high incidence of autonomic nervous system (ANS) dys- function in patients treated in ICU [1]. ANS disturbances may produce diverse and unexpected consequences. For instance, critically ill patients are at risk of neurocognitive impairments that may persist after hospital discharge. Among various pathophysiological mechanisms proposed, ANS dysfunction leading cholinergic deficiency seems one of the most viable to explain the development of long-term sequelae. Heart rate variability (HRV) has been related to the activity of the prefrontal cortex [2] hence, prefrontal activation could help to strengthen the auto- nomic nervous system integrity. We are interested in assessing the improvement of the ANS dysfunction through neural circuits’ activation. Thus, we propose a novel therapy that could allow the reinforcing of ANS through an early neurocognitive intervention targeted to improve prefrontal activation. Objectives The aim of this study was to explore if the integrity of the ANS, via cardiac vagal tone, measured by the HRV can be modified after early neurocognitive rehabilitation in ICU patients. Methods A total of 17 critically ill patients received a 20-minute Early Neurocognitive Rehabilitation (ENR) session in their own bed in the ICU. HRV was derived from the recorded ECG signal during pre-session, session and post-session. Power in the specific frequency bands related to sympathetic and parasympathetic systems was computed (PLF and PHF for low and high frequency bands, respectively). PLF was computed within the clas- sic band, while PHF was computed within a band cen- tered at respiratory rate. Changes in the HRV parameters from pre-session to session, and from pre- session to post-session were studied using Wilcoxon signed-rank test. Results Clinical data of the sample are summarized in table 1. Comparing with baseline values, 9 patients (53%) showed a decreased PLF in post-session, while 8 patients (47%) presented a higher PLF (p = .759). In 12 patients (71%), PHF increased after the ENR session, suggesting an increase of parasympathetic activity (p = .836). Conclusions Diagnosis, severity of illness or medication could explain the differential effect in the evolution of the HRV para- meters among different patients. Despite differences, an early neurocognitive rehabilitation seems to increase parasympathetic activity after the session in the majority of the patients. Clinical characteristics of the critical ill patients should be further studied to determinate which patients could be the best candidates for early neurocog- nitive intervention

    Resolving Structure and Mechanical Properties at the Nanoscale of Viruses with Frequency Modulation Atomic Force Microscopy

    Get PDF
    Structural Biology (SB) techniques are particularly successful in solving virus structures. Taking advantage of the symmetries, a heavy averaging on the data of a large number of specimens, results in an accurate determination of the structure of the sample. However, these techniques do not provide true single molecule information of viruses in physiological conditions. To answer many fundamental questions about the quickly expanding physical virology it is important to develop techniques with the capability to reach nanometer scale resolution on both structure and physical properties of individual molecules in physiological conditions. Atomic force microscopy (AFM) fulfills these requirements providing images of individual virus particles under physiological conditions, along with the characterization of a variety of properties including local adhesion and elasticity. Using conventional AFM modes is easy to obtain molecular resolved images on flat samples, such as the purple membrane, or large viruses as the Giant Mimivirus. On the contrary, small virus particles (25–50 nm) cannot be easily imaged. In this work we present Frequency Modulation atomic force microscopy (FM-AFM) working in physiological conditions as an accurate and powerful technique to study virus particles. Our interpretation of the so called “dissipation channel” in terms of mechanical properties allows us to provide maps where the local stiffness of the virus particles are resolved with nanometer resolution. FM-AFM can be considered as a non invasive technique since, as we demonstrate in our experiments, we are able to sense forces down to 20 pN. The methodology reported here is of general interest since it can be applied to a large number of biological samples. In particular, the importance of mechanical interactions is a hot topic in different aspects of biotechnology ranging from protein folding to stem cells differentiation where conventional AFM modes are already being used
    • …
    corecore