397 research outputs found

    Preparation of 169Yb Calibration Sources for the Measurement of Electron Anti-Neutrino Mass

    Get PDF
    é–‹ć§‹ăƒšăƒŒă‚žă€ç”‚äș†ăƒšăƒŒă‚ž: ć†Šć­äœ“ăźăƒšăƒŒă‚žä»˜

    Generation of Stable Pluripotent Stem Cells From NOD Mouse Tail-Tip Fibroblasts

    Get PDF
    OBJECTIVE: The NOD mouse strain has been widely used to investigate the pathology and genetic susceptibility for type 1 diabetes. Induced pluripotent stem cells (iPSCs) derived from this unique mouse strain would enable new strategies for investigating type 1 diabetes pathogenesis and potential therapeutic targets. The objective of this study was to determine whether somatic fibroblasts from NOD mice could be reprogrammed to become iPSCs, providing an alternative source of stem cells for the production of genetically modified NOD cells and mice. RESEARCH DESIGN AND METHODS: Adult tail-tip fibroblasts from male NOD mice were reprogrammed by retroviral transduction of the coding sequences of three transcription factors, OCT4, SOX2, and KLF4, in combination with a histone deacetylase inhibitor, valproic acid. RESULTS: Eighteen NOD iPSC lines were generated, and three of these cell lines were further characterized. All three cell lines exhibited silencing of the three reprogramming transgenes and reactivation of endogenous pluripotent markers (OCT4, SOX2, NANOG, REX1, and SSEA1). These NOD iPSCs readily differentiated in vitro to form embryoid bodies and in vivo by teratoma formation in immunodeficient mice. Moreover, NOD iPSCs were successfully transfected with a reporter transgene and were capable of contributing to the inner cell mass of C57BL/6 blastocysts, leading to the generation of a chimeric mouse. CONCLUSIONS: Adult tail-tip fibroblasts from NOD mice can be reprogrammed, without constitutive ectopic expression of transcription factors, to produce iPSCs that exhibit classic mouse embryonic stem cell (ESC) features. These NOD iPSCs can be maintained and propagated under normal ESC culture conditions to produce genetically altered cell lines, differentiated cells, and chimeric mice

    Calcium-dependent dynamics of cadherin interactions at cell–cell junctions

    Get PDF
    Cadherins play a key role in the dynamics of cell–cell contact formation and remodeling of junctions and tissues. Cadherin–cadherin interactions are gated by extracellular Ca^(2+), which serves to rigidify the cadherin extracellular domains and promote trans junctional interactions. Here we describe the direct visualization and quantification of spatiotemporal dynamics of N-cadherin interactions across intercellular junctions in living cells using a genetically encodable FRET reporter system. Direct measurements of transjunctional cadherin interactions revealed a sudden, but partial, loss of homophilic interactions (τ = 1.17 ± 0.06 s^(−1)) upon chelation of extracellular Ca^(2+). A cadherin mutant with reduced adhesive activity (W2A) exhibited a faster, more substantial loss of homophilic interactions (τ = 0.86 ± 0.02 s^(−1)), suggesting two types of native cadherin interactions—one that is rapidly modulated by changes in extracellular Ca^(2+) and another with relatively stable adhesive activity that is Ca^(2+) independent. The Ca^(2+)-sensitive dynamics of cadherin interactions were transmitted to the cell interior where ÎČ-catenin translocated to N-cadherin at the junction in both cells. These data indicate that cadherins can rapidly convey dynamic information about the extracellular environment to both cells that comprise a junction

    Cadherin–catenin expression in primary colorectal cancer: a survival analysis

    Get PDF
    Both cell adhesion and cell signalling events are mediated by components of the cadherin-catenin complex. Loss of expression of the components of this complex have been shown to correlate with invasive behaviour in many tumour types although their exact role in colorectal cancer remains unclear. Immunohistochemical analysis of the expression of components of the cadherin-catenin complex in colorectal cancers from 60 patients was undertaken. Loss of memberanous expression of E-cadherin, alpha-catenin and beta-catenin was demonstrated in 52%, 85% and 40% of tumours respectively. Focal nuclear expression of beta-catenin ( 75% of tumour cells per section) was seen in 11 (18%) tumours. Loss of membranous alpha-catenin expression significantly correlated with tumour de-differentiation (P = 0.009). There was a trend towards an association between advanced tumour stage and loss of membranous expression of alpha-catenin or beta-catenin, although these associations were not statistically significant. Univariate analysis revealed that advanced Dukes' stage, tumour de-differentiation, loss of membranous beta-catenin expression, cytoplasmic beta-catenin expression and widespread nuclear expression of beta-catenin all correlated with short survival following apparently curative resection of the primary tumour. However, only Dukes' stage (P = 0.002), tumour grade (P = 0.02) and widespread nuclear expression of beta-catenin (P = 0.002) were independent predictors of short survival. Disturbed growth signalling events in colorectal tumours are thought to result in nuclear accumulation of beta-catenin. Consequently, tumours with widespread nuclear expression of beta-catenin are likely to have severely abnormal growth characteristics, and which therefore might be predictive of short survival in these patients

    Reevaluating αE-catenin monomer and homodimer functions by characterizing E-cadherin/αE-catenin chimeras

    Get PDF
    As part of the E-cadherin–ÎČ-catenin–αE-catenin complex (CCC), mammalian αE-catenin binds F-actin weakly in the absence of force, whereas cytosolic αE-catenin forms a homodimer that interacts more strongly with F-actin. It has been concluded that cytosolic αE-catenin homodimer is not important for intercellular adhesion because E-cadherin/αE-catenin chimeras thought to mimic the CCC are sufficient to induce cell–cell adhesion. We show that, unlike αE-catenin in the CCC, these chimeras homodimerize, bind F-actin strongly, and inhibit the Arp2/3 complex, all of which are properties of the αE-catenin homodimer. To more accurately mimic the junctional CCC, we designed a constitutively monomeric chimera, and show that E-cadherin–dependent cell adhesion is weaker in cells expressing this chimera compared with cells in which αE-catenin homodimers are present. Our results demonstrate that E-cadherin/αE-catenin chimeras used previously do not mimic αE-catenin in the native CCC, and imply that both CCC-bound monomer and cytosolic homodimer αE-catenin are required for strong cell–cell adhesion

    Regulation of Classical Cadherin Membrane Expression and F-Actin Assembly by Alpha-Catenins, during Xenopus Embryogenesis

    Get PDF
    Alpha (α)-E-catenin is a component of the cadherin complex, and has long been thought to provide a link between cell surface cadherins and the actin skeleton. More recently, it has also been implicated in mechano-sensing, and in the control of tissue size. Here we use the early Xenopus embryos to explore functional differences between two α-catenin family members, α-E- and α-N-catenin, and their interactions with the different classical cadherins that appear as tissues of the embryo become segregated from each other. We show that they play both cadherin-specific and context-specific roles in the emerging tissues of the embryo. α-E-catenin interacts with both C- and E-cadherin. It is specifically required for junctional localization of C-cadherin, but not of E-cadherin or N-cadherin at the neurula stage. α-N-cadherin interacts only with, and is specifically required for junctional localization of, N-cadherin. In addition, α -E-catenin is essential for normal tissue size control in the non-neural ectoderm, but not in the neural ectoderm or the blastula. We also show context specificity in cadherin/ α-catenin interactions. E-cadherin requires α-E-catenin for junctional localization in some tissues, but not in others, during early development. These specific functional cadherin/alpha-catenin interactions may explain the basis of cadherin specificity of actin assembly and morphogenetic movements seen previously in the neural and non-neural ectoderm
    • 

    corecore