14 research outputs found

    Assessing Syndromic Surveillance of Cardiovascular Outcomes from Emergency Department Chief Complaint Data in New York City

    Get PDF
    Prospective syndromic surveillance of emergency department visits has been used for near-real time tracking of communicable diseases to detect outbreaks or other unexpected disease clusters. The utility of syndromic surveillance for tracking cardiovascular events, which may be influenced by environmental factors and influenza, has not been evaluated. We developed and evaluated a method for tracking cardiovascular events using emergency department free-text chief complaints.There were three phases to our analysis. First we applied text processing algorithms based on sensitivity, specificity, and positive predictive value to chief complaint data reported by 11 New York City emergency departments for which ICD-9 discharge diagnosis codes were available. Second, the same algorithms were applied to data reported by a larger sample of 50 New York City emergency departments for which discharge diagnosis was unavailable. From this more complete data, we evaluated the consistency of temporal variation of cardiovascular syndromic events and hospitalizations from 76 New York City hospitals. Finally, we examined associations between particulate matter ≤2.5 µm (PM(2.5)), syndromic events, and hospitalizations. Sensitivity and positive predictive value were low for syndromic events, while specificity was high. Utilizing the larger sample of emergency departments, a strong day of week pattern and weak seasonal trend were observed for syndromic events and hospitalizations. These time-series were highly correlated after removing the day-of-week, holiday, and seasonal trends. The estimated percent excess risks in the cold season (October to March) were 1.9% (95% confidence interval (CI): 0.6, 3.2), 2.1% (95% CI: 0.9, 3.3), and 1.8% (95%CI: 0.5, 3.0) per same-day 10 µg/m(3) increase in PM(2.5) for cardiac-only syndromic data, cardiovascular syndromic data, and hospitalizations, respectively.Near real-time emergency department chief complaint data may be useful for timely surveillance of cardiovascular morbidity related to ambient air pollution and other environmental events

    Salt Dependence of the Tribological Properties of a Surface-Grafted Weak Polycation in Aqueous Solution

    Get PDF
    The nanoscopic adhesive and frictional behaviour of end-grafted poly[2-(dimethyl amino)ethyl methacrylate] (PDMAEMA) films (brushes) in contact with gold- or PDMAEMA-coated atomic force microscope tips in potassium halide solutions with different concentrations up to 300 mM is a strong function of salt concentration. The conformation of the polymers in the brush layer is sensitive to salt concentration, which leads to large changes in adhesive forces and the contact mechanics at the tip–sample contact, with swollen brushes (which occur at low salt concentrations) yielding large areas of contact and friction–load plots that fit JKR behaviour, while collapsed brushes (which occur at high salt concentrations) yield sliding dominated by ploughing, with conformations in between fitting DMT mechanics. The relative effect of the different anions follows the Hofmeister series, with I − collapsing the brushes more than Br − and Cl − for the same salt concentration

    Recognition of Drivers’ Activity Based on 1D Convolutional Neural Network

    No full text
    Background and objective: Driving a car is a complex activity which involves movements of the whole body. Many studies on drivers’ behavior are conducted to improve road traffic safety. Such studies involve the registration and processing of multiple signals, such as electroencephalography (EEG), electrooculography (EOG) and the images of the driver’s face. In our research, we attempt to develop a classifier of scenarios related to learning to drive based on the data obtained in real road traffic conditions via smart glasses. In our approach, we try to minimize the number of signals which can be used to recognize the activities performed while driving a car. Material and methods: We attempt to evaluate the drivers’ activities using both electrooculography (EOG) and a deep learning approach. To acquire data we used JINS MEME smart glasses furnished with 3-point EOG electrodes, 3-axial accelerometer and 3-axial gyroscope. Sensor data were acquired on 20 drivers (ten experienced and ten learner drivers) on the same 28.7 km route under real road conditions in southern Poland. The drivers performed several tasks while wearing the smart glasses and the tasks were linked to the signal during the drive. For the recognition of four activities (parking, driving through a roundabout, city traffic and driving through an intersection), we used one-dimensional convolutional neural network (1D CNN). Results: The maximum accuracy was 95.6% on validation set and 99.8% on training set. The results prove that the model based on 1D CNN can classify the actions performed by drivers accurately. Conclusions: We have proved the feasibility of recognizing drivers’ activity based solely on EOG data, regardless of the driving experience and style. Our findings may be useful in the objective assessment of driving skills and thus, improving driving safety

    Elevated transition temperature in Ge doped VO2 thin films

    No full text
    Thermochromic GexV1-xO2+y thin films have been deposited on Si (100) substrates by means of reactive magnetron sputtering. The films were then characterized by Rutherford backscattering spectrometry (RBS), four-point probe electrical resistivity measurements, X-ray diffraction, and atomic force microscopy. From the temperature dependent resistivity measurements, the effect of Ge doping on the semiconductor-to-metal phase transition in vanadium oxide thin films was investigated. The transition temperature was shown to increase significantly upon Ge doping (similar to 95 degrees C), while the hysteresis width and resistivity contrast gradually decreased. The precise Ge concentration and the film thickness have been determined by RBS. The crystallinity of phase-pure VO2 monoclinic films was confirmed by XRD. These findings make the use of vanadium dioxide thin films in solar and electronic device applications-where higher critical temperatures than 68 degrees C of pristine VO2 are needed-a viable and promising solution. Published by AIP Publishing

    Protein Design: Toward Functional Metalloenzymes

    No full text
    The scope of this Review is to discuss the construction of metal sites in designed protein scaffolds. We categorize the effort of designing proteins into redesign, which is to rationally engineer desired functionality into an existing protein scaffold,(1-9) and de novo design, which is to build a peptidic or protein system that is not directly related to any sequence found in nature yet folds into a predicted structure and/or carries out desired reactions.(10-12) We will analyze and interpret the significance of designed protein systems from a coordination chemistry and biochemistry perspective, with an emphasis on those containing constructed metal sites as mimics for metalloenzymes

    Experiences of the Telemedicine and eHealth Conferences in Poland—A Cross-National Overview of Progress in Telemedicine

    No full text
    The progress in telemedicine can be observed globally and locally. Technological changes in telecommunications systems are intertwined with developments in telemedicine. The recent COVID-19 pandemic has expanded the potential of teleconsultations and telediagnosis solutions in all areas of medicine. This article presents: (1) an overview of milestones in the development of telecommunications systems that allow progress in telemedicine and (2) an analysis of the experiences of the last seven conferences of telemedicine and eHealth in Poland. The telemedicine and eHealth conferences have grown steadily in Poland since their inception in the late 1990s. An exemplary conference program content was used to assess the scientific maturity of the conference, measured by the indices of research dissemination and the impact of publications. The overview presents progress in selected areas of telemedicine, looking at local developments and broader changes. The growing interest in telemedicine in the world’s medical sciences is demonstrated by visibility metrics in Google Scholar, Pubmed, Scopus and Web of Science. National scientific events are assumed to raise interest in the population and influence the creation of general policies. As seen in the example of Poland, the activity of the scientific community gathered around the Polish Telemedicine Society led to novel legal acts that allowed the general practice of telemedicine during the SARS-CoV-2 pandemic. Local scientific conferences focusing on telemedicine research can be a catalyst for changes in attitudes and regulations and the preparation of recommendations for the practice of telemedicine and electronic health. On the basis of the results of this study, it can be concluded that the progress in telemedicine cannot be analyzed in isolation from the ubiquitous developments in technology and telecommunications. More research is needed to assess the cumulative impact of long-standing scientific conferences in telemedicine, as exemplified by the telemedicine and eHealth conferences in Poland

    Experiences of the Telemedicine and eHealth Conferences in Poland—A Cross-National Overview of Progress in Telemedicine

    No full text
    The progress in telemedicine can be observed globally and locally. Technological changes in telecommunications systems are intertwined with developments in telemedicine. The recent COVID-19 pandemic has expanded the potential of teleconsultations and telediagnosis solutions in all areas of medicine. This article presents: (1) an overview of milestones in the development of telecommunications systems that allow progress in telemedicine and (2) an analysis of the experiences of the last seven conferences of telemedicine and eHealth in Poland. The telemedicine and eHealth conferences have grown steadily in Poland since their inception in the late 1990s. An exemplary conference program content was used to assess the scientific maturity of the conference, measured by the indices of research dissemination and the impact of publications. The overview presents progress in selected areas of telemedicine, looking at local developments and broader changes. The growing interest in telemedicine in the world’s medical sciences is demonstrated by visibility metrics in Google Scholar, Pubmed, Scopus and Web of Science. National scientific events are assumed to raise interest in the population and influence the creation of general policies. As seen in the example of Poland, the activity of the scientific community gathered around the Polish Telemedicine Society led to novel legal acts that allowed the general practice of telemedicine during the SARS-CoV-2 pandemic. Local scientific conferences focusing on telemedicine research can be a catalyst for changes in attitudes and regulations and the preparation of recommendations for the practice of telemedicine and electronic health. On the basis of the results of this study, it can be concluded that the progress in telemedicine cannot be analyzed in isolation from the ubiquitous developments in technology and telecommunications. More research is needed to assess the cumulative impact of long-standing scientific conferences in telemedicine, as exemplified by the telemedicine and eHealth conferences in Poland

    Novel Hemin Binding Domains in the Corynebacterium diphtheriae HtaA Protein Interact with Hemoglobin and Are Critical for Heme Iron Utilization by HtaAâ–¿

    No full text
    The human pathogen Corynebacterium diphtheriae utilizes hemin and hemoglobin as iron sources for growth in iron-depleted environments. The use of hemin iron in C. diphtheriae involves the dtxR- and iron-regulated hmu hemin uptake locus, which encodes an ABC hemin transporter, and the surface-anchored hemin binding proteins HtaA and HtaB. Sequence analysis of HtaA and HtaB identified a conserved region (CR) of approximately 150 amino acids that is duplicated in HtaA and present in a single copy in HtaB. The two conserved regions in HtaA, designated CR1 and CR2, were used to construct glutathione S-transferase (GST) fusion proteins (GST-CR1 and GST-CR2) to assess hemin binding by UV-visual spectroscopy. These studies showed that both domains were able to bind hemin, suggesting that the conserved sequences are responsible for the hemin binding property previously ascribed to HtaA. HtaA and the CR2 domain were also shown to be able to bind hemoglobin (Hb) by the use of an enzyme-linked immunosorbent assay (ELISA) method in which Hb was immobilized on a microtiter plate. The CR1 domain exhibited a weak interaction with Hb in the ELISA system, while HtaB showed no significant binding to Hb. Competitive binding studies demonstrated that soluble hemin and Hb were able to inhibit the binding of HtaA and the CR domains to immobilized Hb. Moreover, HtaA was unable to bind to Hb from which the hemin had been chemically removed. Alignment of the amino acid sequences of CR domains from various Corynebacterium species revealed several conserved residues, including two highly conserved tyrosine (Y) residues and one histidine (H) residue. Site-directed mutagenesis studies showed that Y361 and H412 were critical for the binding to hemin and Hb by the CR2 domain. Biological assays showed that Y361 was essential for the hemin iron utilization function of HtaA. Hemin transfer experiments demonstrated that HtaA was able to acquire hemin from Hb and that hemin bound to HtaA could be transferred to HtaB. These findings are consistent with a proposed mechanism of hemin uptake in C. diphtheriae in which hemin is initially obtained from Hb by HtaA and then transferred between surface-anchored proteins, with hemin ultimately transported into the cytosol by an ABC transporter
    corecore