239 research outputs found
Schottky Barriers on GaAs
The forward current of Schottky barriers on n-type GaAs is investigated as a function of electron concentration in the range of 8Ă10^17 to 8Ă10^18 cm^â3 at temperatures 297-4.2°K. Both vacuum-cleaved and chemically polished surfaces are used. The majority of the junctions studied are gold Schottky barriers, but tin and lead contacts are also examined. The predominant current mechanism is field emission at liquid-nitrogen temperature and below for the range of electron concentrations used. These data are in excellent quantitative agreement at 77°K with the field-emission analysis of Padovani and Stratton if one uses a two-band model for the imaginary wave number kn. At 297°K, thermionic field emission predominates, but for an electron density above 3Ă1018 cmâ3 the field-emission mechanism with a two-band model still gives reasonable agreement
First grade reading materials of high interest level for children from the ages of seven through twelve.
Thesis (Ed.M.)--Boston Universit
District level mandates and high school students' understanding of economics
This paper investigates the impact of district-level course mandates on studentsâ end-of-course economic understanding. Data were collected from Mississippi high school students studying economics in three different course environments. Students were either enrolled in a one semester economics course required for graduation, enrolled in a one semester course taken as an elective, or studying economics as an infusion subject within a United States history course. A
regression-based selection model was estimated to control for studentsâ demographic characteristics, educational attributes, market experiences, and school attributes. The results indicated that student test scores were significantly less for those students studying economics as an infusion subject and when taking a mandated stand-alone course, ceteris paribus. The authors conclude that course
mandates may result in teacher and student issues that reduce the overall observed level of test performance
District level mandates and high school students' understanding of economics
This paper investigates the impact of district-level course mandates on studentsâ end-of-course economic understanding. Data were collected from Mississippi high school students studying economics in three different course environments. Students were either enrolled in a one semester economics course required for graduation, enrolled in a one semester course taken as an elective, or studying economics as an infusion subject within a United States history course. A
regression-based selection model was estimated to control for studentsâ demographic characteristics, educational attributes, market experiences, and school attributes. The results indicated that student test scores were significantly less for those students studying economics as an infusion subject and when taking a mandated stand-alone course, ceteris paribus. The authors conclude that course
mandates may result in teacher and student issues that reduce the overall observed level of test performance
A measurement of secondary cosmic microwave background anisotropies with two years of South Pole Telescope observations
We present the first three-frequency South Pole Telescope (SPT) cosmic
microwave background (CMB) power spectra. The band powers presented here cover
angular scales 2000 < ell < 9400 in frequency bands centered at 95, 150, and
220 GHz. At these frequencies and angular scales, a combination of the primary
CMB anisotropy, thermal and kinetic Sunyaev-Zel'dovich (SZ) effects, radio
galaxies, and cosmic infrared background (CIB) contributes to the signal. We
combine Planck and SPT data at 220 GHz to constrain the amplitude and shape of
the CIB power spectrum and find strong evidence for non-linear clustering. We
explore the SZ results using a variety of cosmological models for the CMB and
CIB anisotropies and find them to be robust with one exception: allowing for
spatial correlations between the thermal SZ effect and CIB significantly
degrades the SZ constraints. Neglecting this potential correlation, we find the
thermal SZ power at 150 GHz and ell = 3000 to be 3.65 +/- 0.69 muK^2, and set
an upper limit on the kinetic SZ power to be less than 2.8 muK^2 at 95%
confidence. When a correlation between the thermal SZ and CIB is allowed, we
constrain a linear combination of thermal and kinetic SZ power: D_{3000}^{tSZ}
+ 0.5 D_{3000}^{kSZ} = 4.60 +/- 0.63 muK^2, consistent with earlier
measurements. We use the measured thermal SZ power and an analytic, thermal SZ
model calibrated with simulations to determine sigma8 = 0.807 +/- 0.016.
Modeling uncertainties involving the astrophysics of the intracluster medium
rather than the statistical uncertainty in the measured band powers are the
dominant source of uncertainty on sigma8 . We also place an upper limit on the
kinetic SZ power produced by patchy reionization; a companion paper uses these
limits to constrain the reionization history of the Universe.Comment: 25 pages; 14 figures; Submitted to ApJ (Updated to reflect referee
comments
Modeling Extragalactic Foregrounds and Secondaries for Unbiased Estimation of Cosmological Parameters From Primary CMB Anisotropy
Using the latest physical modeling and constrained by the most recent data,
we develop a phenomenological parameterized model of the contributions to
intensity and polarization maps at millimeter wavelengths from external
galaxies and Sunyaev-Zeldovich effects. We find such modeling to be necessary
for estimation of cosmological parameters from Planck data. For example,
ignoring the clustering of the infrared background would result in a bias in
n_s of 7 sigma. We show that the simultaneous marginalization over a full
foreground model can eliminate such biases, while increasing the statistical
uncertainty in cosmological parameters by less than 20%. The small increases in
uncertainty can be significantly reduced with the inclusion of
higher-resolution ground-based data.
The multi-frequency analysis we employ involves modeling 46 total power
spectra and marginalization over 17 foreground parameters. We show that we can
also reduce the data to a best estimate of the CMB power spectra, and just two
principal components (with constrained amplitudes) describing residual
foreground contamination.Comment: 17 pages, 7 figures, submitted to Ap
A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data
We study the consistency of 150 GHz data from the South Pole Telescope (SPT)
and 143 GHz data from the Planck satellite over the patch of sky covered by the
SPT-SZ survey. We first visually compare the maps and find that the residuals
appear consistent with noise after accounting for differences in angular
resolution and filtering. We then calculate (1) the cross-spectrum between two
independent halves of SPT data, (2) the cross-spectrum between two independent
halves of Planck data, and (3) the cross-spectrum between SPT and Planck data.
We find the three cross-spectra are well-fit (PTE = 0.30) by the null
hypothesis in which both experiments have measured the same sky map up to a
single free calibration parameter---i.e., we find no evidence for systematic
errors in either data set. As a by-product, we improve the precision of the SPT
calibration by nearly an order of magnitude, from 2.6% to 0.3% in power.
Finally, we compare all three cross-spectra to the full-sky Planck power
spectrum and find marginal evidence for differences between the power spectra
from the SPT-SZ footprint and the full sky. We model these differences as a
power law in spherical harmonic multipole number. The best-fit value of this
tilt is consistent among the three cross-spectra in the SPT-SZ footprint,
implying that the source of this tilt is a sample variance fluctuation in the
SPT-SZ region relative to the full sky. The consistency of cosmological
parameters derived from these datasets is discussed in a companion paper.Comment: 15 pages, 9 figures. Published in The Astrophysical Journal. Current
arxiv version matches published versio
A Measurement of the Cosmic Microwave Background Damping Tail from the 2500-square-degree SPT-SZ survey
We present a measurement of the cosmic microwave background (CMB) temperature
power spectrum using data from the recently completed South Pole Telescope
Sunyaev-Zel'dovich (SPT-SZ) survey. This measurement is made from observations
of 2540 deg of sky with arcminute resolution at GHz, and improves
upon previous measurements using the SPT by tripling the sky area. We report
CMB temperature anisotropy power over the multipole range . We
fit the SPT bandpowers, combined with the seven-year Wilkinson Microwave
Anisotropy Probe (WMAP7) data, with a six-parameter LCDM cosmological model and
find that the two datasets are consistent and well fit by the model. Adding SPT
measurements significantly improves LCDM parameter constraints; in particular,
the constraint on tightens by a factor of 2.7. The impact of
gravitational lensing is detected at , the most significant
detection to date. This sensitivity of the SPT+WMAP7 data to lensing by
large-scale structure at low redshifts allows us to constrain the mean
curvature of the observable universe with CMB data alone to be
. Using the SPT+WMAP7 data, we measure the
spectral index of scalar fluctuations to be in the LCDM
model, a preference for a scale-dependent spectrum with .
The SPT measurement of the CMB damping tail helps break the degeneracy that
exists between the tensor-to-scalar ratio and in large-scale CMB
measurements, leading to an upper limit of (95%,C.L.) in the LCDM+
model. Adding low-redshift measurements of the Hubble constant () and the
baryon acoustic oscillation (BAO) feature to the SPT+WMAP7 data leads to
further improvements. The combination of SPT+WMAP7++BAO constrains
in the LCDM model, a detection of , ... [abridged]Comment: 21 pages, 10 figures. Replaced with version accepted by ApJ. Data
products are available at http://pole.uchicago.edu/public/data/story12
A Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite
The Planck cosmic microwave background (CMB) temperature data are best fit
with a LCDM model that is in mild tension with constraints from other
cosmological probes. The South Pole Telescope (SPT) 2540 SPT-SZ
survey offers measurements on sub-degree angular scales (multipoles ) with sufficient precision to use as an independent check of
the Planck data. Here we build on the recent joint analysis of the SPT-SZ and
Planck data in \citet{hou17} by comparing LCDM parameter estimates using the
temperature power spectrum from both data sets in the SPT-SZ survey region. We
also restrict the multipole range used in parameter fitting to focus on modes
measured well by both SPT and Planck, thereby greatly reducing sample variance
as a driver of parameter differences and creating a stringent test for
systematic errors. We find no evidence of systematic errors from such tests.
When we expand the maximum multipole of SPT data used, we see low-significance
shifts in the angular scale of the sound horizon and the physical baryon and
cold dark matter densities, with a resulting trend to higher Hubble constant.
When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky
data but keep the multipole range restricted, we find differences in the
parameters and . We perform further checks, investigating
instrumental effects and modeling assumptions, and we find no evidence that the
effects investigated are responsible for any of the parameter shifts. Taken
together, these tests reveal no evidence for systematic errors in SPT or Planck
data in the overlapping sky coverage and multipole range and, at most, weak
evidence for a breakdown of LCDM or systematic errors influencing either the
Planck data outside the SPT-SZ survey area or the SPT data at .Comment: 14 pages, 7 figures. Updated 1 figure and expanded on the reasoning
for fixing the affect of lensing on the power spectrum instead of varying
Alen
- âŠ